首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   3篇
天文学   7篇
自然地理   1篇
  2013年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1981年   1篇
排序方式: 共有13条查询结果,搜索用时 46 毫秒
1.
Abstract— We have analyzed several types of data associated with the well‐documented fall of the Neuschwanstein meteorites on April 6, 2002 (a total of three meteorites have been recovered). This includes ground‐based photographic and radiometer data as well as infrasound and seismic data from this very significant bolide event (Spurný et al. 2002, 2003). We have also used these data to model the entry of Neuschwanstein, including the expected dynamics, energetics, panchromatic luminosity, and associated fragmentation effects. In addition, we have calculated the differential efficiency of acoustical waves for Neuschwanstein and used these values to compare against the efficiency calculated using available ground‐based infrasound data. This new numerical technique has allowed the source height to be determined independent of ray tracing solutions. We have also carried out theoretical ray tracing for a moving point source (not strictly a cylindrical line emission) and for an infinite speed line source. In addition, we have determined the ray turning heights as a function of the source height for both initially upward and downward propagating rays, independent of the explicit ray tracing (detailed propagation path) programs. These results all agree on the origins of the acoustic emission and explicit source heights for Neuschwanstein for the strongest infrasonic signals. Calculated source energies using more than four different independent approaches agree that Neuschwanstein was certainly <500 kg in initial mass, given the initial velocity of 20.95 km/s, resulting in an initial source energy ≤0.0157‐0.0276 kt TNT equivalent (4.185 times 1012 J). Local source energies at the calculated infrasonic/seismic source altitudes are up to two orders of magnitude smaller than this initial source energy.  相似文献   
2.
The imminent return of the Genesis Sample Return Capsule (SRC) from the Earth’s L1 point on September 8, 2004, represents the first opportunity since the Apollo era to study the atmospheric entry of a meter-sized body at or above the Earth’s escape speed. Until now, reentry heating models are based on only one successful reentry with an instrumented vehicle at higher than escape speed, the 22 May 1965 NASA “FIRE 2” experiment. In preparation of an instrumented airborne and ground-based observing campaign, we examined the expected bolide radiation for the reentry of the Genesis SRC. We find that the expected emission spectrum consists mostly of blackbody emission from the SRC surface (T∼ ∼2630 K@peak heating), slightly skewed in shape because of a range of surface temperatures. At high enough spectral resolution, shock emission from nitrogen and oxygen atoms, as well as the first positive and first negative bands of N2+, will stand out above this continuum. Carbon atom lines and the 389-nm CN band emission may also be detected, as well as the mid-IR 4.6-μm CO band. The ablation rate can be studied from the signature of trace sodium in the heat shield material, calibrated by the total amount of matter lost from the recovered shield. A pristine collection of the heat shield would also permit the sampling of products of ablation.  相似文献   
3.
Abstract— We present the basic differential equations of meteor physics (the single body equations). We solve them numerically including two possible types of fragmentation: into large pieces and into a cluster of small fragments. We have written a Fortran code that computes the motion, ablation and light intensity of a meteoroid at chosen heights, and allows for the ablation and shape density coefficients σ and K, as well as the luminous efficiency τ, to be variable with height/time. We calibrated our fragmentation model (FM) by the best fit to observational values for the motion, ablation, radiation, fragmentation and the terminal masses (recovered meteorites) for the Lost City bolide. The FM can also handle multiple and overlapping meteor flares. We separately define both the apparent and intrinsic values of σ, K, and τ. We present in this paper values of the intrinsic luminous efficiency as function of velocity, mass, and normalized air density. Detailed results from the successful application of the FM to the Lost City, Innisfree, and Benesov bolides are also presented. Results of applying the FM to 15 bolides with very precise observational data are presented in a survey mode (Table 7). Standard deviations of applying our FM to all these events correspond to the precision of the observed values. Typical values of the intrinsic ablation coefficient are low, mostly in the range from 0.004 to 0.008 s2 km?2, and do not depend on the bolide type. The apparent ablation coefficients reflect the process of fragmentation. The bolide types indicate severity of the fragmentation process. The large differences of the “dynamic” and “photometric” mass from numerous earlier studies are completely explained by our FM. The fragmentation processes cannot be modeled simply by large values of the apparent ablation coefficient and of the apparent luminous efficiency. Moreover, our new FM can also well explain the radiation and full dynamics of very fast meteoroids at heights from 200 km to 130 km.  相似文献   
4.
The Darwin Mounds are small (up to 70 m in diameter), discrete cold‐water coral banks found at c. 950 m water depth in the northern Rockall Trough, north‐east Atlantic. Formerly described in terms of their genesis, the Darwin Mounds are re‐evaluated here in terms of mound growth processes based on 100 and 410 kHz side‐scan sonar data. The side‐scan sonar coverage is divided into a series of acoustic facies representing increasing current speed and sediment transport/erosion from south to north: pockmark facies, ‘mounds within depressions’ facies, Darwin Mound facies, stippled seabed facies and sand wave facies. Mound morphometric changes are quantified and show a south‐to‐north divergence from an inherited morphology, reflecting the outline of coral‐colonized fluid escape structures, to developed, downstream elongated, elevated mound forms. It is postulated that increasing current speeds and bedload sand transport favour mound growth and development by a process of enhanced sand sedimentation within mounds due to current deceleration by frictional drag around coral colonies. Comparisons are made with similar growth processes attributed to comparably sized cold‐water coral mounds in the Porcupine Seabight, offshore Ireland.  相似文献   
5.
Abstract— The sound production from the Morávka fireball has been examined in detail making use of infrasound and seismic data. A detailed analysis of the production and propagation of sonic waves during the atmospheric entry of the Morávka meteoroid demonstrates that the acoustic energy was produced both by the hypersonic flight of the meteoroid (producing a cylindrical blast wave) and by individual fragmentation events of the meteoroid, which acted as small explosions (producing quasispherical shock waves). The deviation of the ray normals for the fragmentation events was found to be as much as 30° beyond that expected from a purely cylindrical line source blast. The main fragmentation of the bolide was confined to heights above 30 km with a possible maximum in acoustic energy production near 38 km. Seismic stations recorded both the direct arrival of the airwaves (the strongest signal) as well as air‐coupled P‐waves and Rayleigh waves (earlier signals). In addition, deep underground stations detected the seismic signature of the fireball. The seismic data alone permit reconstruction of the fireball trajectory to a precision on the order of a few degrees. The velocity of the meteoroid is much less well‐determined by these seismic data. The more distant infrasonic station detected 3 distinct signals from the fireball, identified as a thermospheric return, a stratospheric return, and an unusual mode propagating through the stratosphere horizontally and then leaking to the receiver.  相似文献   
6.
7.
Announcements     
Abstract

This is an updated and extended presentation of the results of the IAHS Workshop on Quality Assurance in Hydrologic Measurement, held during the XXI General Assembly of the International Union of Geodesy and Geophysics (IUGG), Boulder, Colorado, USA, in July 1995. The main focus at Boulder was on experience with hydrological applications of the international standard ISO 9002 and developments in rating curve theory. A case study of a quality assurance system is presented. Progress in hydrometric quality assurance since the workshop and areas for future development are discussed.  相似文献   
8.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   
9.
10.
Abstract The St-Robert (Québec, Canada) meteorite shower occurred on 1994 June 15 at 0h02m UT accompanied by detonations audible for >200 km from the fireball endpoint. The fireball was recorded by visual observers in Vermont, New York State, New Hampshire, Québec and Ontario as well as by optical and infrared sensors in Earth-orbit. Penetration to an altitude of 36 km occurred ~60 km to the northeast of Montreal, where the bolide experienced several episodes of fragmentation. A total of 20 fragments of this H5 chondrite, comprising a total mass of 25.4 kg, were recovered in an ellipse measuring 8 × 3.5 km. One fragment of the shower partially penetrated the aluminum roof of a shed. Interpretation of the visual and satellite data suggests that the fireball traveled from south-southwest to north-northeast, with a slope from the horizontal of 55°–61°. A statistical evaluation of the likely heliocentric orbits for the body prior to collision with the Earth, coupled with theoretical modeling of the entry, suggests an entry velocity in the range of 12.7–13.3 km/s; the meteoroid had moved in a low-inclination orbit, with orbital perihelion located extremely close to the Earth's orbit. From satellite optical data, it is found that the photometric mass consumed during the largest detonation is ~1200 kg. Estimation of the amplitude of the acoustic signal detected by the most distant observer yields a source energy near 0.5 kt TNT equivalent energy, which corresponds to a mass of order 10 metric tonnes. This measure is uncertain to approximately one order of magnitude. Theoretical modeling of the entry of the object suggests a mass near 1600 kg. Cosmogenic radionuclide activities constrain the lower initial mass to be ~700 kg with an upper limit near 4000 kg. Seismic data possibly associated with the fireball suggest extremely poor coupling between the airwave and the ground. The total mass estimated to have reached the ground is ~100 kg (in material comprising >55 g fragments), while the preatmospheric mass is found to be most probably in the range of 1200–2000 kg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号