首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
大气科学   4篇
地球物理   1篇
地质学   9篇
天文学   1篇
自然地理   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2000年   1篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1982年   1篇
  1976年   1篇
  1968年   1篇
  1967年   1篇
  1957年   1篇
排序方式: 共有16条查询结果,搜索用时 93 毫秒
1.
The imminent return of the Genesis Sample Return Capsule (SRC) from the Earth’s L1 point on September 8, 2004, represents the first opportunity since the Apollo era to study the atmospheric entry of a meter-sized body at or above the Earth’s escape speed. Until now, reentry heating models are based on only one successful reentry with an instrumented vehicle at higher than escape speed, the 22 May 1965 NASA “FIRE 2” experiment. In preparation of an instrumented airborne and ground-based observing campaign, we examined the expected bolide radiation for the reentry of the Genesis SRC. We find that the expected emission spectrum consists mostly of blackbody emission from the SRC surface (T∼ ∼2630 K@peak heating), slightly skewed in shape because of a range of surface temperatures. At high enough spectral resolution, shock emission from nitrogen and oxygen atoms, as well as the first positive and first negative bands of N2+, will stand out above this continuum. Carbon atom lines and the 389-nm CN band emission may also be detected, as well as the mid-IR 4.6-μm CO band. The ablation rate can be studied from the signature of trace sodium in the heat shield material, calibrated by the total amount of matter lost from the recovered shield. A pristine collection of the heat shield would also permit the sampling of products of ablation.  相似文献   
2.
Multianvil melting experiments in the system CaO–MgO–Al2O3–SiO2–CO2(CMAS–CO2) at 3–8 GPa, 1340–1800°C, involvingthe garnet lherzolite phase assemblage in equilibrium with CO2-bearingmelts, yield continuous gradations in melt composition betweencarbonatite, kimberlite, melilitite, komatiite, picrite, andbasalt melts. The phase relations encompass a divariant surfacein PT space. Comparison of the carbonatitic melts producedat the low-temperature side of this surface with naturally occurringcarbonatites indicates that natural magnesiocarbonatites couldbe generated over a wide range of pressures >2·5 GPa.Melts analogous to kimberlites form at higher temperatures alongthe divariant surface, which suggests that kimberlite genesisrequires more elevated geotherms. However, the amount of waterfound in some kimberlites has the potential to lower temperaturesfor the generation of kimberlitic melts by up to 150°C,provided no hydrous phases are present. Compositions resemblinggroup IB and IA kimberlites are produced at pressures around5–6 GPa and 10 GPa, respectively, whereas the compositionsof some other kimberlites suggest generation at higher pressuresstill. At pressures <4 GPa, an elevated geotherm producesmelilitite-like melt in the CMAS–CO2 system rather thankimberlite. Even when a relatively CO2-rich mantle compositioncontaining 0·15 wt % CO2 is assumed, kimberlites andmelilitites are produced by <1% melting and carbonatitesare generated by even smaller degrees of melting of <0·5%. KEY WORDS: carbonatite; CO2; kimberlite; melilitite; melt generation  相似文献   
3.
4.
5.
Ten data sets have been collected from stratigraphical intervals in the Upper Carboniferous of Central Scotland. They represent six structural units and both distal and proximal deltaic environments, plus a meandering river environment. All show a definite tendency towards a linear relationship between the number of deltaic or fluvial cycles and the total thickness of strata in the interval. This relationship is, however, much stronger in sequences laid down in actively subsiding depositional basins than in areas where subsidence is thought to have been controlled by block faulting in the basement or in areas where there is no clearly defined pattern or subsidence. With respect to facies, the relationship is less close in successions that were frequently affected by widespread marine transgressions. The slopes of linear regression lines fitted to the data sets vary much more than had hitherto been supposed. Thus they are no longer thought to provide possible evidence of some ubiquitous underlying process, such as ductile flow in the upper mantle, which affected all the structural units equally. The line which represents proximal deltaic deposits of Westphalian A age in the Kincardine Basin slopes twice as steeply as any of the eight lines representing other dominantly deltaic successions and considerably more steeply than the line representing a succession of Namurian fluvial cycles. Second- and third-degree polynomial regression lines were also fitted to each data set but these generally satisfy little more of the total variation than do the corresponding linear regression lines, and F-test results indicate that the gains are not statistically significant. Eight of the second-degree lines however share a common shape that suggests a general tendency for both deltaic and fluvial cycles to be somewhat thicker in the areas of greatest net subsidence.  相似文献   
6.
7.
The quantitative relationships between stratigraphical variables from a succession of coal-bearing cycles deposited in a subsiding basin have been investigated using principal component- and factor analysis, in an attempt to reveal simple relationships undetected by conventional qualitative methods. Knowledge of such relationships will undoubtedly be useful in future computer simulation studies of cyclical sedimentation. Principal component analysis and factor analysis yield similar results, which confirm and amplify those of the trend surface analysis described in Read and Dean (1967).  相似文献   
8.
The late Archaean Munni Munni Complex is a layered mafic-ultramaficintrusion emplaced into granitic rocks of the west Pilbara Block.It consists of a lower Ultramafic Zone with a maximum thicknessof 1850 m and an overlying Gabbroic Zone at least 3600 m thick.There are strong geometrical and stratigraphic similaritiesto the Great Dyke of Zimbabwe. The Ultramafic Zone comprises multiple macrorhythmic cyclesof olivine-clinopyroxene adcumulates and mesocumulates. Layeringdips towards the centre of the intrusion and trends laterallyinto a narrow and variably contaminated chilled margin. Higherlayers extend progressively further up the sloping floor ofthe intrusion. Cryptic layering is defined by rapid fluctuationsin Cr content of cumulus clinopyroxene, accompanied by relativelysmall variation in Fe/Mg ratio. The base of the Gabbroic Zone is marked by the first appearanceof cumulus plagioclase and the simultaneous appearance of pigeoniteas a persistent cumulus phase. Magnetite appears as a cumulusphase 400–600 m above this. Gabbroic Zone cumulates showa gradual linear upward increase in Fe/Mg and an absence ofcyclic layering, suggesting crystallization in a closed chamber. Chilled margin samples show evidence of in situ contamination,but indicate that the parent magma to the ultramafic portionof the intrusion was a high-Mg, low-Ti basalt with similaritiesto typical Archaean siliceous high-Mg basalts. Partial meltingof granitic wall rocks occurred along steep side walls but wasless extensive along the shallow-dipping floor. A pyroxenitedyke, the Cadgerina Dyke, intersects the floor of the intrusionat a level close to the top of the Ultramafic Zone, and appearsto have acted as a feeder conduit to the Gabbroic Zone and theuppermost layers of the Ultramafic Zone. The contact zone between the Ultramafic Zone and the GabbroicZone is a distinctive 30–50 m thick pyroxenite layer,the Porphyritic Websterite Layer, which also exlends laterallyup the side walls of the intrusion to form a 200 m thick marginalborder zone separating Gabbroic Zone cumulates from countryrock granites. A distinctive suite of bronzite-rich xenoliths,some containing Al-rich, Cr-poor spinel seams, occurs withinand just above the Porphyritic Websterite Layer in the centralpart of the intrusion. There is a steep gradient of decreasing Cr and increasing Fe/Mgin cumulus clinopyroxenes across the upper 100 m of the UltramaficZone. A sharp downward step in Cr occurs a few metres belowthe base of the Gabbroic Zone, immediately beneath a stronglyorthocumulate layer of augite cumulate containing disseminatedplatinum-group element (PGE)-rich sulphides. Lateral pyroxenecomposition trends within the Porphyritic Websterite Layer canbe accounted for by an increase in cumulus porosity as thislayer approaches the floor of the intrusion. Quantitative modelling of pyroxene composition trends indicatesthat Ultramafic Zone cumulates crystallized from relativelysmall volumes of magma, an order of magnitude less than thesize of the magma body inferred from trends in the GabbroicZone. This conclusion, together with the geometry of the PorphyriticWebsterite Layer, implies that the Porphyritic Websterite Layermarks a level at which the chamber expanded as a result of amajor new influx of magma. Pyroxene composition trends indicatethat this influx was of a distinetly different and more fractionatedcomposition than that parental to the Ultramafic Zone. Injection of fractionated tholeiitic magma into more primitivehigh-Mg basalt resident magma formed a turbulent fountain, whichentrained the resident magma and formed a cool, dense basalhybrid layer. Crystallization of the Porphyritic WebsteriteLayer occurred where the top of this hybrid layer impinged onthe sloping floor. Continuing injection of tholeiitic magmaexpanded the thickness of the hybrid layer, causing the PorphyriticWebsterite Layer to accrete progressively up the sloping floorand the walls. After the conclusion of the influx phase, thehybrid layer became homogenized to a final tholeiite-rich composition,which eventually crystallized to form the Gabbroic Zone. Thexenolithic rocks within and above the Porphyritic WebsteriteLayer were probably derived initially by crystallization ofa contaminated silica-enriched melt layer at the roof of theintrusion, followed by detachment and sinking or slumping tothe floor. Orthopyroxene phenocrysts within the PorphyriticWebsterite Layer may also have originated within this roof zone.  相似文献   
9.
Fe–Mg exchange is the most important solid solution involvedin partial melting of spinel lherzolite, and the system CaO–MgO–Al2O3–SiO2–FeO(CMASF) is ideally suited to explore this type of exchange duringmantle melting. Also, if primary mid-ocean ridge basalts arelargely generated in the spinel lherzolite stability field bynear-fractional fusion, then Na and other highly incompatibleelements will early on become depleted in the source, and themelting behaviour of mantle lherzolite should resemble the meltingbehaviour of simplified lherzolite in the CMASF system. We havedetermined the isobarically univariant melting relations ofthe lherzolite phase assemblage in the CMASF system in the 0·7–2·8GPa pressure range. Isobarically, for every 1 wt % increasein the FeO content of the melt in equilibrium with the lherzolitephase assemblage, the equilibrium temperature is lower by about3–5°C. Relative to the solidus of model lherzolitein the CaO–MgO–Al2O3–SiO2 system, melt compositionsin the CMASF system are displaced slightly towards the alkalicside of the basalt tetrahedron. The transition on the solidusfrom spinel to plagioclase lherzolite has a positive Clapeyronslope with the spinel lherzolite assemblage on the high-temperatureside, and has an almost identical position in P–T spaceto the comparable transition in the CaO–MgO–Al2O3–SiO2–Na2O(CMASN) system. When the compositions of all phases are describedmathematically and used to model the generation of primary basalts,temperature and melt composition changes are small as percentmelting increases. More specifically, 10% melting takes placeover 1·5–2°C, melt compositions are relativelyinsensitive to the degree of melting and bulk composition, andequilibrium and near-fractional melting yield similar melt compositions.FeO and MgO are the oxides that exhibit the greatest changein the melt with degree of melting and bulk composition. Theamount of FeO decreases with increasing degree of melting, whereasthe amount of MgO increases. The coefficients for Fe–Mgexchange between the coexisting crystalline phases and melt,KdFe–Mgxl–liq, show a relatively simple and predictablebehaviour with pressure and temperature: the coefficients forolivine and spinel do not show significant dependence on temperature,whereas the coefficients for orthopyroxene and clinopyroxeneincrease with pressure and temperature. When melting of lherzoliteis modeled in the CMASF system, a strong linear correlationis observed between the mg-number of the lherzolite and themg-number of the near-solidus melts. Comparison with meltingin the CMASN system indicates that Na2O has a strong effecton lherzolite melting behaviour only at small degrees of melting. KEY WORDS: CMASF; lherzolite solidus; mantle melting  相似文献   
10.
This detailed quantitative basin analysis of fluvial deposits in a subsiding Namurian structural basin is aimed at discovering underlying statistical relationships between numbers of fluvial cycles, bulk lithological composition and net subsidence which could be used as a background to future sophisticated computer simulation experiments and would also facilitate comparison with other ancient basins. The succession studied lies between two widespread marine bands, one of Arnsbergian (E2) and one of Kinderscoutian (R1) age, and is dominated by upward-fining cycles: 94% of the semi-cycles containing sand, here termed grain-size cycles, are upward-fining and the ratio of fine members (mudstone+siltstone) to coarse members ranges from 0·23 to 5·0. Trend-surface analysis reveals basement structures, which influenced sedimentation, including a Caledonoid graben. Correlation coefficient values and results of principal component analysis demonstrate that the numbers of rooty horizons and grain-size cycles, together with the total thicknesses of sandstone and of mudstone+siltstone, all tend significantly towards a linear relationship with the total thickness of strata and hence net subsidence. The average thickness of grain-size cycles tends towards an inverse linear relationship with net subsidence. This probably reflects the presence of stacked, relatively thin, channel-fills within persistent channel belts. These belts tend to be localized in the areas of greatest subsidence within the basin and follow courses basically similar to channels already discovered in the underlying deltaic sediments. The highest concentrations of mudstone+siltstone tend to lie on the flanks of the basin, but high local sand concentrations found at points on the margin where channels entered the basin from the NW and NE and left to the SW, effectively disrupt any significant relationship between net subsidence and the proportion of sand. Coal has been selectively preserved on the flanks of the basin and the number of rooty horizons is greatest in an area of low subsidence which lay somewhat remote from the main channel belts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号