首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   30篇
  国内免费   1篇
测绘学   7篇
大气科学   52篇
地球物理   79篇
地质学   180篇
海洋学   31篇
天文学   69篇
综合类   5篇
自然地理   32篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   16篇
  2017年   15篇
  2016年   15篇
  2015年   17篇
  2014年   14篇
  2013年   27篇
  2012年   15篇
  2011年   28篇
  2010年   25篇
  2009年   36篇
  2008年   23篇
  2007年   24篇
  2006年   22篇
  2005年   21篇
  2004年   19篇
  2003年   11篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   7篇
  1998年   2篇
  1997年   7篇
  1996年   4篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1980年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1959年   1篇
  1942年   2篇
  1933年   1篇
  1932年   1篇
  1930年   1篇
  1928年   1篇
  1925年   1篇
  1924年   2篇
  1923年   1篇
  1922年   2篇
  1919年   1篇
排序方式: 共有455条查询结果,搜索用时 78 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
Planetary bodies a few hundred kilometers in radii are the precursors to larger planets but it is unclear whether these bodies themselves formed very rapidly or accreted slowly over several millions of years. Ordinary H chondrite meteorites provide an opportunity to investigate the accretion time scale of a small planetary body given that variable degrees of thermal metamorphism present in H chondrites provide a proxy for their stratigraphic depth and, therefore, relative accretion times. We exploit this feature to search for nucleosynthetic isotope variability of 54Cr, which is a sensitive tracer of spatial and temporal variations in the protoplanetary disk's solids, between 17 H chondrites covering all petrologic types to obtain clues about the parent body accretionary rate. We find no systematic variability in the mass‐biased corrected abundances of 53Cr or 54Cr outside of the analytical uncertainties, suggesting very rapid accretion of the H chondrite parent body consistent with turbulent accretion. By utilizing the μ54Cr–planetary mass relationship observed between inner solar system planetary bodies, we calculate that the H chondrite accretion occurred at 1.1 ± 0.4 or 1.8 ± 0.2 Myr after the formation of calcium‐aluminum‐rich inclusions (CAIs), assuming either the initial 26Al/27Al abundance of inner solar system solids determined from angrite meteorites or CAIs from CV chondrites, respectively. Notably, these ages are in agreement with age estimates based on the parent bodies’ thermal evolution when correcting these calculations to the same initial 26Al/27Al abundance, reinforcing the idea of a secular evolution in the isotopic composition of inner disk solids.  相似文献   
3.
We investigate the region of crater Haulani on Ceres with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR), combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Haulani, which is one of the youngest craters on Ceres, exhibits a peculiar “blue” visible to near‐infrared spectral slope, and has distinct color properties as seen in multispectral composite images. In this paper, we investigate a number of spectral indices: reflectance; spectral slopes; abundance of Mg‐bearing and NH4‐bearing phyllosilicates; nature and abundance of carbonates, which are diagnostic of the overall crater mineralogy; plus a temperature map that highlights the major thermal anomaly found on Ceres. In addition, for the first time we quantify the abundances of several spectral endmembers by using VIR data obtained at the highest pixel resolution (~0.1 km). The overall picture we get from all these evidences, in particular the abundance of Na‐ and hydrous Na‐carbonates at specific locations, confirms the young age of Haulani from a mineralogical viewpoint, and suggests that the dehydration of Na‐carbonates in the anhydrous form Na2CO3 may be still ongoing.  相似文献   
4.
The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals of DAMPE is to observe Ge V-Te V high energy γ-rays with accurate energy,angular and time resolution,to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays,it is challenging to identify γ-rays with sufficiently high efficiency,minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations,using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at~10 Ge V amounts to less than 1% of the selected sample.Finally,we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.  相似文献   
5.
In this study, a water‐air two‐phase flow model was employed to investigate the formation, extension, and dissipation of groundwater ridging induced by recharge events in a hypothetical hillslope‐riparian zone, considering interactions between the liquid and gas phases in soil voids. The simulation results show that, after a rain begins, the groundwater table near the stream is elevated instantaneously and significantly, thereby generating a pressure gradient driving water toward both the stream (the discharge of groundwater to the stream) and upslope (the extension of groundwater ridging into upslope). Meanwhile, the airflow upslope triggered by the advancing wetting front moves downward gradually. Therefore, the extension of groundwater ridging into upslope and the downward airflow interact within a certain region. After the rain stops, groundwater ridging near the stream declines quickly while the airflow in the lower part of upslope is still moving into the hillslope. Thus, the airflow upslope mitigates the dissipation of groundwater ridging. Additionally, the development of groundwater ridging under different conditions, including rain intensity, intrinsic permeability, capillary fringe height, and initial groundwater table, was analyzed. Changes in intrinsic permeability affect the magnitude of groundwater ridging near the stream, as well as the downward speed of airflow, thereby generating highly complex responses. The capillary fringe is not a controlling factor but an influence factor on the formation of groundwater ridging, which is mainly related to the antecedent moisture. It was demonstrated that groundwater ridging also occurs where an unsaturated zone occurs above the capillary fringe with a subsurface lateral flow.  相似文献   
6.
Rock glaciers are slowly flowing mixtures of debris and ice occurring in mountains. They can represent a reservoir of water, and melting ice inside them can affect surface water hydrochemistry. Investigating the interactions between rock glaciers and water bodies is therefore necessary to better understand these mechanisms. With this goal, we elucidate the hydrology and structural setting of a rock glacier–marginal pond system, providing new insights into the mechanisms linking active rock glaciers and impounded surface waters. This was achieved through the integration of waterborne geophysical techniques (ground penetrating radar, electrical resistivity tomography and self‐potentials) and heat tracing. Results of these surveys showed that rock glacier advance has progressively filled the valley depression where the pond is located, creating a dam that could have modified the level of impounded water. A sub‐surface hydrological window connecting the rock glacier to the pond was also detected, where an inflow of cold and mineralised underground waters from the rock glacier was observed. Here, greater water contribution from the rock glacier occurred following intense precipitation events during the ice‐free season, with concomitant increasing electrical conductivity values. The outflowing dynamic of the pond is dominated by a sub‐surface seepage where a minor fault zone in bedrock was found, characterised by altered and highly‐fractured rocks. The applied approach is evaluated here as a suitable technique for investigating logistically‐complex hydrological settings which could be possibly transferred to wider scales of investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
7.
We report on the petrography and mineralogy of five Yamato polymict eucrites to better constrain the formation and alteration of crustal material on differentiated asteroids. Each sample consists of different lithic clasts that altogether form four dominant textures and therefore appear to originate from closely related petrological areas within Vesta′s crust. The textures range from subophitic to brecciated, porphyritic, and quench‐textured, that differ from section to section. Comparison with literature data for these samples is therefore difficult, which stresses that polymict eucrites are extremely complex in their petrography and investigation of only one thick section may not be representative for the host rock. We also show that sample Y‐793548 consists of more than one lithic unit and must therefore be classified as polymict instead of monomict. The variety and nature of lithic textures in the investigated Yamato meteorites indicate shock events, intense post‐magmatic thermal annealing, and secondary alteration. These postmagmatic features occur in different intensities, varying from clast to clast or among coexisting mineral fragments on a small, local scale. Several clasts within the eucrites studied have been modified by late‐stage alteration processes that caused deposition of Fe‐rich olivine and Fe enrichment along cracks crosscutting pyroxene crystals. However, formation of these secondary phases seems to be independent of the degree of thermal metamorphism observed within every type of clast, which would support a late‐stage metasomatism model for their formation.  相似文献   
8.
9.
The subsurface acid mine drainage (AMD) environment of an abandoned underground uranium mine in Königstein/Saxony/Germany, currently in the process of remediation, is characterized by low pH, high sulfate concentrations and elevated concentrations of heavy metals, in particular uranium. Acid streamers thrive in the mine drainage channels and are heavily coated with iron precipitates. These precipitates are biologically mediated iron precipitates and related to the presence of Fe-oxidizing microorganisms forming copious biofilms in and on the Fe-precipitates. Similar biomineralisations were also observed in stalactite-like dripstones, called snottites, growing on the gallery ceilings.The uranium speciation in these solutions of underground AMD waters flowing in mine galleries as well as dripping from the ceiling and forming stalactite-like dripstones were studied by time resolved laser-induced fluorescence spectroscopy (TRLFS). The fluorescence lifetime of uranium species in both AMD water environments were best described with a mono-exponential decay, indicating the presence of one major species. The detected positions of the emission bands and by comparing it in a fingerprinting procedure with spectra obtained for acid sulfate reference solutions, in particular Fe(III) - SO42− - UO22+ reference solutions, indicated that the uranium speciation in the AMD environment of Königstein is dominated in the pH range of 2.5-3.0 by the highly mobile aquatic uranium sulfate species UO2SO4(aq) and formation of uranium precipitates is rather unlikely as is retardation by sorption processes. The presence of iron in the AMD reduces the fluorescence lifetime of the UO2SO4(aq) species from 4.3 μs, found in iron-free uranium sulfate reference solutions, to 0.7 μs observed in both AMD waters of Königstein and also in the iron containing uranium sulfate reference solutions.Colloids were not observed in both drainage water and dripping snottite water as photon correlation spectroscopy analyses and centrifugation experiments at different centrifugal accelerations between 500g and 46000g revealed. Thus transport and uranium speciation at the investigated AMD sites is neither influenced by U(IV) or U(VI) eigencolloids nor by uranium adsorbed on colloidal particles.This study shows that TRLFS is a suitable spectroscopic technique to identify the uranium speciation in bulk solutions of AMD environments.  相似文献   
10.
This paper studies the long-run economic effects of severe weather on regional economies. A catastrophic event, such as a hurricane, will have an effect on both the directly impacted region and adjacent regions. With dramatically increasing damage from catastrophic weather events over the past few decades, comprehensive assessment of the long-run economic impact of natural disasters across the broader region becomes more important than ever for planning for post-disaster recovery. We estimate the long-run effect of Hurricane Katrina on the unemployment rate of Houston, TX by employing time-series and fixed-effect models. Using Dallas as a control, we find that Katrina is associated with a higher long-run unemployment rate in Houston than would otherwise have been expected. This implies that the hurricane-generated adverse relative effects on Houston. Our findings suggest that areas that are geographically proximate to the directly impacted region can sustain lasting negative economic consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号