首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   3篇
自然地理   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  1995年   1篇
排序方式: 共有5条查询结果,搜索用时 250 毫秒
1
1.
A geochemical evaluation of the Szc-Halimba-Kisld area, Hungary, covering an area of more than 200 km2 is presented using different statistical and geostatistical methods. The study area is a representative example of allochtonous karst bauxite accumulation. The three groups of deposits studied here have been explored and mined since 1950. Several thousand boreholes have been drilled, and bauxite cores were analyzed for the five main chemical components. A total of 80,000 pleces of analytical data were processed, followed by a geological examination of borehole logs and of mining excavations.The quantitative geochemical evaluation of the data set led to both geochemical and practical results: The geochemical behavior of the allochtonous, clastic karst bauxite deposits differs essentially from that of the autochtonous and parautochtonous ones, as well as that of the lateritic bauxite deposits. The deposits of the study area can be split into several subsequent geochemical-sedimentological units, each representing an event of bauxite transport and accumulation. Clear regional patterns can be revealed in the composition of these units. The geostatistically measured chemical variability of the geochemical units is rather different, the lowest units showing the smallest variability. The interrelations of the main chemical components are weaker and more irregular in the studied deposits than in the autochtonous lateritic bauxite deposits. Additional local genetic features, such as transport routes, can be delineated by the methods applied. Within each deposit, local changes of chemical composition and of its variability can be determined more precisely. These results can be used in bauxite prospecting and exploration, because areas of high or low bauxite quality can be predicted.  相似文献   
2.
The Reykjanes geothermal system is a seawater-recharged hydrothermal system that appears to be analogous to seafloor hydrothermal systems in terms of host rock type and low water/rock alteration. The similarities make the Reykjanes system a useful proxy for seafloor vents. At some time during the Pleistocene, the system was dominated by meteoric water recharge, and fluid composition at Reykjanes has evolved through time as a result of changing proportions of meteoric water influx as well as differing pressure and temperature conditions. The purpose of this study is to characterize secondary mineralization, degree of metasomatic alteration, and bulk composition of cuttings from well RN-17 from the Reykjanes geothermal system. The basaltic host rock includes hyaloclastite, breccia, tuff, extrusive basalt, diabase, as well as a marine sedimentary sequence. The progressive hydrothermal alteration sequence observed with increasing depth results from reaction of geothermal fluids with the basaltic host rock. An assemblage of greenschist facies alteration minerals, including actinolite, prehnite, epidote and garnet, occurs at depths as shallow as 350 m; these minerals are commonly found in Icelandic geothermal systems at temperatures above 250 °C (Bird and Spieler, 2004). This requires hydrostatic pressures that exceed the present-day depth to boiling point curve, and therefore must record alteration at higher fluid pressures, perhaps as a result of Pleistocene glaciation. Major, minor, and trace element profiles of the cuttings indicate transitional MORB to OIB composition with limited metasomatic shifts in easily mobilized elements. Changes in MgO, K2O and loss on ignition indicate that metasomatism is strongly correlated with protolith properties. The textures of alteration minerals reveal alteration style to be strongly dependent on protolith as well. Hyaloclastites are intensely altered with calc-silicate alteration assemblages comprising calcic hydrothermal plagioclase, grandite garnet, prehnite, epidote, hydrothermal clinopyroxene, and titanite. In contrast, crystalline basalts and intrusive rocks display a range in alteration intensity from essentially unaltered to pervasive and nearly complete albitization of igneous feldspar and uralitization of clinopyroxene. Hydrothermal anorthite (An92–An98) occurs in veins in the most altered basalt cuttings and is significantly more calcic than igneous feldspar (An48–An79). Amphibole compositions change from actinolite to hornblende at depth. Hydrothermal clinopyroxene, which occurs in veins, has greater variation in Fe content and is systematically more calcic than igneous pyroxene and also lacks uralitic textures. Solid solutions of prehnite, epidote, and garnet indicate evolving equilibria with respect to aluminum and ferric iron.  相似文献   
3.
Assumptions of simple geometries for alluvial deposits (related to main rivers) can preclude determination of complexities that are revealed as fundamental controls in underground flow. Although subhorizontal contacts between alluvial and substratum materials are expected, previous sedimentary or erosional processes can result in irregular geometries, only accessible through detailed analysis. The studied case presents the 3D reconstruction of a Quaternary terrace in the proximities of Sabiñánigo (Southern Pyrenees, Northeastern Spain), lying on homogeneous Eocene marls. The studied area is located in an industrialized area supporting strongly pollutant chemical industry (chlorinated pesticides) for the past 50 years. The objective of the study was to constrain the groundwater pathway along the area to subsequently analyze leakage of chemicals to the water table. In order to reveal preferred flow paths, a detailed characterization of the internal structure of the alluvial deposits (0.5–13 m thick) and their relations with the Tertiary substratum was carried out by means of ground penetrating radar (GPR, 50 and 100 MHz antennas). The obtained models permit identifying several topographic highs in the alluvial/substratum contact, determining preferred pathways in water flow, favoring particular conditions associated with low levels of the water table. The presented results support the interest of application of GPR surveys in order to characterize the groundwater pathways in expected homogeneous areas and their importance in order to establish the contaminant surveillance network.  相似文献   
4.
5.
The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and ?118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号