首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   5篇
  国内免费   2篇
测绘学   3篇
大气科学   2篇
地球物理   41篇
地质学   77篇
海洋学   19篇
天文学   12篇
综合类   4篇
自然地理   11篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   12篇
  2015年   4篇
  2014年   6篇
  2013年   7篇
  2012年   3篇
  2011年   9篇
  2010年   14篇
  2009年   12篇
  2008年   13篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有169条查询结果,搜索用时 250 毫秒
1.
2.
Typical Ca---Cl brines occur in crystalline and metamorphic rocks below freshwater horizons at various localities in Sweden and Finland. Total dissolved solids (TDS) range in concentration between 2 and 120 gl−1 and have long been thought to derive from water-rock interactions. The relationships between Na, Cl and Br in these brines suggest, however, that they were derived from freezing of seawater during glacial periods. The brines were subsequently diluted by meteoric waters and their Ca/Mg ratio was increased through water-rock interactions in the subsurface. The hydrogeological model for both the formation of freeze-derived marine brines and their lateral intrusion involves restricted inland marine basins in recent and subrecent polar climatic belts. Seawater in such basins gradually freezes in response to glaciation. The solutes which concentrate in the remaining water body are residual after precipitation of a sequence of minerals which include carbonates, mirabilite and hydrohalite. Hydraulic pressure of the growing ice sheet over the frozen seas is gradually added to the ambient hydrostatic pressure exerted on the brines. This, together with their increased density, increases the intrusional potential of the brines. As the land ice cannot exert hydraulic pressure on continental groundwater in the aquifers, the balance of pressure favours deep landward intrusion of brines. Post-glacial processes cause the subsurface dilution and replacement of the brines both by seawater and fresh waters. The presence of such brines also far from present-day coastal settings reflects the shifting of coastlines as a result of isostatic movements and eustatic sea-level changes associated with glaciation and deglaciation.  相似文献   
3.
Salinity and temperature variations in groundwater discharge from the Altug submarine karst cave have been observed at 28 m below sea level for every 10 min between November 2004 and August 2005 to determine the drivers that govern the salinization. Comparisons between temporal trends of salinity and temperature with those of precipitation, air pressure, sea level and wind velocity revealed an apparent dominance of precipitation regime on the salinity and temperature variations. Spectral analyses applied to observations showed that the air pressure and sea level oscillations are affected by sun and moon tides which do not have an appreciable impact on the salinity and temperature variations. Annual rate of salinization in Altug cave seems inversely related to the inland groundwater head so that the maximum and minimum fresh water contributions occur at mid-spring and late-summer, respectively.  相似文献   
4.
5.
Fluid permeability in fractured rocks is sensitive to pore-pressure changes. This dependence can have large effects on the flow of fluids through rocks. We define the permeability compliance γ= 1/k(kpp)pc, which is the sensitivity of the permeability k to the pore pressure pp at a constant confining pressure pc, and solve the specific problems of constant pressure at the boundary of a half-space, a cylindrical cavity and a spherical cavity. The results show that when the magnitude of permeability compliance is large relative to other compliances, diffusion is masked by a piston-like pressure profile. We expect this phenomenon to occur in highly fractured and compliant rock systems where γ may be large. The pressure profile moves rapidly when fluids are pumped into the rock and very slowly when fluids are pumped out. Consequently, fluid pressure, its history and distribution around injection and production wells may be significantly different from pressures predicted by the linear diffusion equation. The propagation speed of the pressure profile, marked by the point where δppx is a maximum, decreases with time approximately as and the amplitude of the profile also dissipates with time (or distance). The effect of permeability compliance can be important for fluid injection into and withdrawal from reservoirs. For example, excessive drawdown could cause near-wellbore flow suffocation. Also, estimates of the storage capacity of reservoirs may be greatly modified when γ is large. The large near-wellbore pressure gradients caused during withdrawal by large γ can cause sanding and wellbore collapse due to excessive production rates.  相似文献   
6.
Amos Banin  Jerzy Navrot 《Icarus》1979,37(1):347-350
Organic carbon in oxidizable forms and nitrogen are the only elements among some 40 elements studied that are significantly enriched in terrestrial soils as compared to the crust. This enrichment is due to and reflecting life activity in soils, and is characterized by a unique profile distribution. It is suggested that these facts can constitute the basis for the future chemical-biological search for life in planetary soils.  相似文献   
7.
The Dead Sea, the Holocene terminal lake of the Jordan River catchment, has fluctuated during its history in response to climatic change. Biblical records, calibrated by radiocarbon-dated geological and archaeological evidence, reinforce and add detail to the chronology of the lake-level fluctuations. There are three historically documented phases of the Dead Sea in the Biblical record: low lake levels ca. 2000–1500 B.C.E. (before common era); high lake levels ca. 1500–1200 B.C.E.; and low lake levels between ca. 1000 and 700 B.C.E. The Biblical evidence indicates that during the dry periods the southern basin of the Dead Sea was completely dry, a fact that was not clear from the geological and archaeological data alone.  相似文献   
8.
9.
ABSTRACT In situ measurements of lakebed sediment erodibility were made on three sites in Hamilton Harbour, Lake Ontario, using the benthic flume Sea Carousel. Three methods of estimating the surface erosion threshold (τc(0)) from a Carousel time series were evaluated: the first method fits measures of bed strength to eroded depth (the failure envelope) and evaluates threshold as the surface intercept; the second method regresses mean erosion rate (Em) with bed shear stress and solves for the floc erosion rate (Ef) to derive the threshold for Em = Ef = 1 × 10?5 kg m?2 s?1; the third method extrapolates a regression of suspended sediment concentration (S) and fluid transmitted bed shear stress (τ0) to ambient concentrations. The first field site was undisturbed (C) and acted as a control; the second (W) was disturbed through ploughing and water injection as part of lakebed treatment, whereas the third site (OIP) was disturbed and injected with an oxidant used for remediation of contaminated sediment. The main objectives of this study were: (1) to evaluate the three different methods of deriving erosion threshold; (2) to compare the physical behaviour of lacustrine sediments with their marine estuarine counterparts; and (3) to examine the effects of ploughing and chemical treatment of contaminated sediment on bed stability. Five deployments of Sea Carousel were carried out at the control site. Mean erosion thresholds for the three methods were: τc(0) = 0·5 (±0·06), 0·27 (±0·01) and 0·34 (±0·03) Pa respectively. Method 1 overpredicted bed strength as it was insensitive to effects in the surface 1–2 mm, and the fit of the failure envelope was also highly subjective. Method 2 exhibited a wide scatter in the data (low correlation coefficients), and definition of the baseline erosion rate (Ef) is largely arbitrary in the literature. Method 3 yielded stable (high correlation coefficients), reproducible and objective results and is thus recommended for evaluation of the erosion threshold. The results of this method correlated well with sediment bulk density and followed the same trend as marine counterparts from widely varying sites. Mass settling rates, expressed as a decay constant, k, of S(t), were strongly related to the maximum turbidity at the onset of settling (Smax) and were also in continuity with marine counterparts. Thus, it appears that differences in salinity had little effect on mass settling rates in the examples presented, and that biological activity dominated any effects normally attributable to changes in salinity. Bedload transport of eroded aggregates (2–4 mm in diameter) took place by rolling below a mean tangential flow velocity (Uy) of 0·32 ms?1 and by saltation at higher velocities. Mass transport as bedload was a maximum at Uy = 0·4 ms?1, although bedload never exceeded 1% of the suspended load. The proportion of material moving as bedload was greatest at the onset of erosion but decreased as flow competence increased. Given the low bulk density and strength of the lakebed sediment, the presence of a bedload component is notable. Bedload transport over eroding cohesive substrates should be greater in estuaries, where both sediment density and strength are usually higher. Significant differences between the ploughed and control sites were apparent in both the erosion rate and the friction coefficient (φ), and suggest that bed recovery after disruption is rapid (< 24 h). τc(0) increased linearly with time after ploughing and recovered to the control mean value within 3 days. The friction coefficient was reduced to zero by ploughing (diagnostic of fluidization), but increased linearly with time, regaining control values within 6 days. No long‐term reduction in bed strength due to remediation was apparent.  相似文献   
10.
High-resolution 230Th/234U ages and δ18O and δ13C compositions of speleothems in Ma’ale Efrayim Cave located to the east of the central mountain ridge of Israel enable us to examine the nature of the rain shadow aridity during glacial and interglacial intervals. Speleothem growth occurred during marine glacial isotopic periods, with no growth during the two last marine isotope interglacial intervals and during the peak of the Last Glacial Maximum. This contrasts with speleothem growth in caves located on the western flank of the central mountain ridge, in the Eastern Mediterranean semiarid climatic zone, which continued throughout the last 240,000 yr. Thus, during glacial periods water reached both sides of the central mountain ridge. A comparison of the present-day rain and cave water isotopic compositions and amounts at the Ma’ale Efrayim Cave site with those on the western flank shows that evaporation and higher temperatures on the eastern flank are major influences on isotopic composition and the lack of rainfall. The δ18O and δ13C profiles of the speleothems deposited between 67,000 and 25,000 yr B.P. match the general trends of the isotopic profiles of Soreq Cave speleothems, suggesting a similar source (eastern Mediterranean Sea) and similar climatic conditions. Thus, during glacial periods the desert boundary effectively migrated further south or east from its present-day location on the eastern flank, whereas interglacial periods appear to have been similar to the present, with the desert boundary at the same position. The decrease in overall temperature and a consequent reduction in the evaporation to precipitation ratios on the eastern flank are viewed as the major factors controlling the decay of the rain shadow effect during glacial periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号