首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地质学   3篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
In recent years, drought has become a global issue, especially in arid and semi-arid areas. It is without doubt that the identification and monitoring of the drought phenomenon can help to reduce the damages that would occur. In addition, rain is one of the factors which directly affect the water levels of underground water reservoirs. This research applied a linear gradient regression method developed on the basis of GRACE, CHIRPS, and data from monitoring wells to investigate the groundwater storage changes.These data have been analyzed on the Google Earth Engine platform. In order to conduct temporal and spatial analyses, the water levels of the aquifer were generated from the monitoring wells and zoned into five classes. Also, the amount of water storage and rain from the year 2003 to 2017 in the West Azerbaijan Province were investigated using the GRACE satellite and the CHIRPS data, respectively. The results obtained from the GRACE satellite data show that the average water level in the underground reservoirs in Iran had started to decrease since 2008 and reached its peak in 2016 with an average decrease of 16 cm in that year. The average annual decline of groundwater level in the studied time period was 5 cm. A chart developed from the CHIRPS annual rainfall data indicates that the biggest decline in rainfall occurred in 2008, and the declining trend has remained steady. Linear analyses were made on GRACE with CHIRPS results and monitoring wells data separately, from which the correlation coefficients are between 86% and 97%, showing generally high correlations. Furthermore, the results obtained from the zoning of the aquifer showed that in the period of 2004 to 2016, due to the decrease in rainfall and the excessive withdrawal of groundwater, the water levels also decreased.  相似文献   
2.
3.
The most important factors in multi-lateral well stability analysis are the magnitude of in situ stresses, the relation between the amount of in situ stresses and orientation of lateral wellbore. In this research, the stability analysis of multi-lateral junction is carried out using FLAC3D numerical code by considering seven varied stress regimes and different lateral wellbore orientations. The Normalized Yielded Zone Area (NYZA, ratio of surrounding yielded cross-sectional area to initial area of well) is determined for different junction mud pressures as well as diverse orientations of lateral wellbore. Then, the junction optimum mud pressure of each lateral wellbore orientation is calculated; hence, the optimum trajectory of lateral wellbore, in which the junction has got the lowest optimum mud pressure, is selected in each stress regime. The stability analysis of multi-lateral wells by means of finite difference method shows that in each stress regime the required mud pressure for the stability of junction is much more than that of the lateral branch and the main wellbore.  相似文献   
4.
Natural Resources Research - In this work, a quantifier-guided ordered weighted averaging (OWA) method was employed for mineral potential mapping (MPM) in Nowchun Cu–Mo prospect, SE Iran. The...  相似文献   
5.
The present work reports treatment of synthetic phenolic wastewater by electrocoagulation process. Aluminum flat sheets were utilized as electrodes. Central composite design combined with response surface methodology has been applied for optimizing the process parameters. The interaction effects of phenol concentration, electrode distance, pH, voltage, and electrolysis time (ET) were analyzed and correlated to assess the efficiency of phenol removal as process response. The ANOVA outcomes declared that the initial phenol concentration (relevant coefficient = ?3.44) and ET (relevant coefficient = 1.42), respectively, are the most and the least effective parameters on the efficiency of phenol removal. Furthermore, optimal factors were obtained as follows: influent phenol concentration = 14.23 mg/L, electrode distance = 2.20 cm, pH = 6.37, voltage = 16.46 V, and electrolysis time = 44.66 min, in which the percentage of phenol removal at this condition was about 90.6%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号