首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   22篇
  国内免费   5篇
大气科学   32篇
地球物理   70篇
地质学   115篇
海洋学   29篇
天文学   75篇
自然地理   36篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   6篇
  2018年   12篇
  2017年   14篇
  2016年   17篇
  2015年   12篇
  2014年   16篇
  2013年   18篇
  2012年   19篇
  2011年   27篇
  2010年   26篇
  2009年   22篇
  2008年   24篇
  2007年   18篇
  2006年   14篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   8篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有357条查询结果,搜索用时 22 毫秒
1.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
2.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   
3.
Abstract

Natural resource challenges often span administrative jurisdictions and include actors and processes operating at different spatial and political scales. We applied concepts of new environmental governance to analyze Oregon’s approach to greater sage-grouse conservation. Through one in-depth case study in Lake County, we traced features of new environmental governance (cross-scale interactions, decentralization, and capacities of actors) through different governance levels. Interviews and qualitative analysis revealed that decentralization of administrative functions facilitated cross-scale interactions and relied on intermediaries, gap-filling, and perceptions of legitimacy at lower levels. State and agency guidelines steered the effort and were accompanied by financial and technical resources from multiple arenas, which increased local capacity. This study adds to the understandings of environmental governance for implementing multi-actor, multi-level conservation arrangements in resource-dependent communities. Further exploration of connections between higher levels and local contexts will reveal important, new ways to link policies with on-the-ground outcomes.  相似文献   
4.
Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1–2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine‐grained (grain size <0.3 mm), a “paired samples t‐test” can provide a statistical comparison between a particular sample and known lunar basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.  相似文献   
5.
Allochthonous salt structures and associated primary and secondary minibasins are exposed in Neoproterozoic strata of the eastern Willouran Ranges, South Australia. Detailed geologic mapping using high‐quality airborne hyperspectral remote‐sensing data and satellite imagery, combined with a qualitative structural restoration, are used to elucidate the evolution of this complex, long‐lived (>250 Myr) salt system. Field observations and interpretations at a resolution unobtainable from seismic or well data provide a means to test published models of allochthonous salt emplacement and associated salt‐sediment interaction derived from subsurface data in the northern Gulf of Mexico. Salt diapirs and sheets are represented by megabreccias of nonevaporite lithologies that were originally interbedded with evaporites that have been dissolved and/or altered. Passive diapirism began shortly after deposition of the Callanna Group layered evaporite sequence. A primary basin containing an expulsion‐rollover structure and megaflap is flanked by two vertical diapirs. Salt flowed laterally from the diapirs to form a complex, multi‐level canopy, now partly welded, containing an encapsulated minibasin and capped by suprasalt basins. Salt and minibasin geometries were modified during the Late Cambrian–Ordovician Delamerian Orogeny (ca. 500 Ma). Small‐scale structures such as subsalt shear zones, fractured or mixed ‘rubble zones’ and thrust imbricates are absent beneath allochthonous salt and welds in the eastern Willouran Ranges. Instead, either undeformed strata or halokinetic drape folds that include preserved diapir roof strata are found directly below the transition from steep diapirs to salt sheets. Allochthonous salt first broke through the diapir roofs and then flowed laterally, resulting in variable preservation of the subsalt drape folds. Lateral salt emplacement was presumably on roof‐edge thrusts or, because of the shallow depositional environment, via open‐toed advance or extrusive advance, but without associated subsalt deformation.  相似文献   
6.
7.
Nutrient concentrations, primary productivity, and nitrogen uptake rates were measured in coastal waters of the Mid-Atlantic Bight over a two-year period that included measurements from all four seasons. In order to assess carbon productivity and nitrogen demand within the context of the physical environment, the region was divided into three distinct hydrographic regimes: the Chesapeake and Delaware Bay outflow plumes (PL), the southern Mid-Atlantic shelf influenced by the Gulf Stream (SS), and the mid-shelf area to the north of the Chesapeake Bay mouth (MS). Annual areal rates of total nitrogen (N) uptake were similar across all regions (10.9 ± 2.1 mol N m−2 y−1). However, annual areal rates of net primary productivity were higher in the outflow plume region (43 mol C m−2 y−1), than along the Mid-Atlantic shelf and in areas influenced by the Gulf Stream (41 and 34 mol C m−2 y−1, respectively). Rates of net primary productivity were not well correlated with Chl a concentrations and were uncoupled with net N uptake rates. Seasonally averaged annual areal rates of net primary productivity for the Mid-Atlantic Bight measured in this study were higher than those calculated in previous decades and provide important validation information for biogeochemical models and satellite remote sensing algorithms developed for the region.  相似文献   
8.
9.
We analyzed hydrogen isotope ratios of high-molecular weight n-alkanes (δDl) and oxygen isotope ratios of α-cellulose (δ18OC) for C3 and C4 grasses grown in the field and in controlled-environment growth chambers. The relatively firm understanding of 18O-enrichment in leaf water and α-cellulose was used to elucidate fractionation patterns of δDl signatures. In the different relative humidity environments of the growth chambers, we observed clear and predictable effects of leaf-water enrichment on δ18OC values. Using a Craig-Gordon model, we demonstrate that leaf water in the growth chamber grasses should have experienced significant D-enriched due to transpiration. Nonetheless, we found no effect of transpirational D-enrichment on the δDl values. In field samples, we saw clear evidence of enrichment (correlating with relative humidity of the field sites) in both δ18OC and δDl. These seemingly contrasting results could be explained if leaf waxes are synthesized in an environment that is isotopically similar to water entering plant roots due to either temporal or spatial isolation from evaporatively enriched leaf waters. For grasses in the controlled environment, there was no enrichment of source water, whereas enrichment of grass source water via evaporation from soils and/or stems was likely for grass samples grown in the field.Based on these results, evaporation from soils and/or stems appears to affect δDl, but transpiration from leaves does not. Further evidence for this conclusion is found in modeling expected net evapotranspirational enrichment. A Craig-Gordon model applied to each of the field sites yields leaf water oxygen isotope ratios that can be used to accurately predict the observed δ18OC values. In contrast, the calculated leaf water hydrogen isotope ratios are more enriched than what is required to predict observed δDl values. These calculations lend support to the conclusion that while δ18OC reflects both soil evaporation and transpiration, δDl appears to only record evaporation from soils and/or stems. Therefore, the δD of n-alkanes can likely be used to reconstruct the δD of water entering a leaf, supporting the soil-enrichment model of Smith and Freeman (2006). In both the field and controlled studies, we found significant photosynthetic pathway effects on n-alkane δD suggesting that biochemical pathways or plant phylogeny have a greater effect on leaf wax δD than leaf-water enrichment in grasses.  相似文献   
10.
This paper reviews how hazard data and geological map data have been combined by the British Geological Survey (BGS) to produce a set of GIS-based national-scale hazard susceptibility maps for the UK. This work has been carried out over the last 9 years and as such reflects the combined outputs of a large number of researchers at BGS. The paper details the inception of these datasets from the development of the seamless digital geological map in 2001 through to the deterministic 2D hazard models produced today. These datasets currently include landslides, shrink-swell, soluble rocks, compressible and collapsible deposits, groundwater flooding, geological indicators of flooding, radon potential and potentially harmful elements in soil. These models have been created using a combination of expert knowledge (from both within BGS and from outside bodies such as the Health Protection Agency), national databases (which contain data collected over the past 175 years), multi-criteria analysis within geographical information systems and a flexible rule-based approach for each individual geohazard. By using GIS in this way, it has been possible to model the distribution and degree of geohazards across the whole of Britain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号