首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
  国内免费   1篇
地球物理   1篇
地质学   3篇
海洋学   2篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
依据地热资料研究天然气水合物稳定带厚度在东海海域的分布情况。东海在地质构造上位于新生代环太平洋构造带西部边缘岛弧的内侧,又是欧亚板块、太平洋板块和菲律宾海板块的相互作用带。依据国际热流委员会(IHFC)提供的东海地热数据,经过统计确定出该区域的热流分布,热流平均值为121·0mW/m2,最小值为73·0mW/m2,最大值为168·0mW/m2。同时利用天然气水合物温压模型计算了稳定带厚度,数据显示稳定带厚度平均值为92·2m,最小值为1·4m,最大值为190·6m,薄于其他已经发现的海洋天然气水合物稳定带厚度(约400m)。天然气水合物大部分分布在条件适宜的陆坡和岛坡上,冲绳海槽底部水合物稳定带厚度相对较薄。统计分析表明本区热流值与水合物稳定带厚度相关性很差,相关系数仅有0·12。这是由于天然气水合物所在海域水深较浅时,海底温度的变化迫使运算所应用的非线性方程影响因子迅速积累,从而导致相关系数降低。最后结合东海陆坡的地质条件,探讨了在天然气水合物存在的情况下,陆坡失稳的可能性及其造成的环境影响。  相似文献   
2.
The South China Sea (SCS) shows favorable conditions for gas hydrate accumulation and exploration prospects. Bottom simulating reflectors (BSRs) are widely distributed in the SCS. Using seismic and sequence stratigraphy, the spatial distribution of BSRs has been determined in three sequences deposited since the Late Miocene. The features of gas hydrate accumulations in northern SCS were systematically analyzed by an integrated analysis of gas source conditions, migration pathways, heat flow values, occurrence characteristics, and depositional conditions (including depositional facies, rates of deposition, sand content, and lithological features) as well as some depositional bodies (structural slopes, slump blocks, and sediment waves). This research shows that particular geological controls are important for the presence of BSRs in the SCS, not so much the basic thermodynamic controls such as temperature, pressure and a gas source. Based on this, a typical depositional accumulation model has been established. This model summarizes the distribution of each depositional system in the continental shelf, continental slope, and continental rise, and also shows the typical elements of gas hydrate accumulations. BSRs appear to commonly occur more in slope-break zones, deep-water gravity flows, and contourites. The gas hydrate-bearing sediments in the Shenhu drilling area mostly contain silt or clay, with a silt content of about 70%. In the continental shelf, BSRs are laterally continuous, and the key to gas hydrate formation and accumulation lies in gas transportation and migration conditions. In the continental slope, a majority of the BSRs are associated with zones of steep and rough relief with long-term alternation of uplift and subsidence. Rapid sediment unloading can provide a favorable sedimentary reservoir for gas hydrates. In the continental rise, BSRs occur in the sediments of submarine fans, turbidity currents.  相似文献   
3.
To study on the significance and basis of acidolysis index to China marine gas hydrate exploring,since 2006,111 samples derived from Leg 164 and 204 of the Ocean Drilling Program (ODP) were analyzed in...  相似文献   
4.
西南太平洋天然气水合物形成与分布的地热背景   总被引:2,自引:1,他引:1       下载免费PDF全文
天然气水合物广泛分布于海底和永久冻土带。自20世纪末以来,新西兰北岛东坡希古朗基陆架和澳大利亚新喀里多尼亚盆地相继被科学家发现了天然气水合物标志BSR(BottomSimulatingReflector),这引起世界广泛关注,文章结合以前的研究工作,从地热角度剖析天然气水合物赋藏状况。依据国际热流委员会(IHFC)提供的西南太平洋地热数据,经过统计确定出该区域的热流分布;计算得出该区域热流平均值为80.1mW/m2,低于全球大洋边缘盆地地区平均热流值101±2.2mW/m2;结合天然气水合物温压方程,计算结果表明西南太平洋天然气水合物稳定带厚度平均值为274±20m,薄于其他已经发现的海洋天然气水合物稳定带平均厚度(约400m)。文章还定量分析了温度参数对天然气水合物稳定带的影响。  相似文献   
5.
苏正  陈多福 《地球物理学报》2007,50(5):1518-1526
除合适的温度和压力条件外,甲烷水合物的形成还需要有充足的甲烷供给,沉积物孔隙水中的甲烷浓度必须大于甲烷水合物的溶解度.本文建立了水合物-水-游离气三相体系、水合物-水二相体系、气-水二相体系的甲烷溶解度计算优选方法,计算确定了水合物系统的甲烷溶解度-深度相图,依此划分出游离气、溶解气、水-水合物、水-水合物-游离气四个甲烷不同相态分布区.对水合物脊ODP1249和1250钻位、布莱克海台ODP997钻位稳定带甲烷水合物含量和稳定带之下游离气含量进行了计算.ODP1249浅部13.5~72.4 mbsf(mbsf表示海底以下深度)的甲烷水合物是沉积物孔隙体积的10%~61%,ODP1250钻位35~1065 mbsf的甲烷水合物约为孔隙体积的0.7%~1.9%,水合物层之下游离气层厚约22 m,游离气含量约占孔隙的4%.布莱克海台ODP997钻位的浅部146.9 mbsf处无水合物发育,202.4~433.3 mbsf之间水合物占孔隙体积的约5%~7%,水合物层之下游离气层厚约80 m,游离甲烷含量为孔隙的0.2%~28%.  相似文献   
6.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号