首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   34篇
  国内免费   164篇
测绘学   1篇
地球物理   19篇
地质学   544篇
海洋学   1篇
天文学   4篇
综合类   8篇
自然地理   6篇
  2024年   3篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   10篇
  2018年   15篇
  2017年   17篇
  2016年   12篇
  2015年   18篇
  2014年   11篇
  2013年   60篇
  2012年   36篇
  2011年   16篇
  2010年   23篇
  2009年   16篇
  2008年   24篇
  2007年   22篇
  2006年   34篇
  2005年   21篇
  2004年   25篇
  2003年   18篇
  2002年   10篇
  2001年   16篇
  2000年   14篇
  1999年   13篇
  1998年   15篇
  1997年   17篇
  1996年   8篇
  1995年   12篇
  1994年   16篇
  1993年   13篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
排序方式: 共有583条查询结果,搜索用时 31 毫秒
1.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   
2.
The Vredefort dome in the Kaapvaal Craton was formed as a result of the impact of a large meteorite at 2.02 Ga. The central core of Archaean granitic basement rocks is surrounded by a collar of uplifted and overturned strata of the Witwatersrand Supergroup, exposing a substantial depth section of the Archaean crust. Orthogneisses of the core show little variation in whole-rock δ 18O value, with the majority being between 8 and 10‰, with a mean of 9.2‰ (n = 35). Quartz and feldspar have per mil differences that are consistent with O-isotope equilibrium at high temperatures, suggesting minimal interaction with fluids during subsequent cooling. These data refute previous suggestions that the Outer Granite Gneiss (OGG) and Inlandsee Leucogranofels (ILG) of the core represent middle and lower crust, respectively. Granulite-facies greenstone remnants from the ILG have δ 18O values that are on average 1.5‰ higher than the ILG host rocks and are unlikely, therefore, to represent the residuum from the partial melting event that formed the host rock. Witwatersrand Supergroup sedimentary rocks of the collar, which were metamorphosed at greenschist-to amphibolite-facies conditions, generally have lower δ 18O values than the core rocks with a mean value for metapelites of 7.7‰ (n = 45). Overall, through an ∼20 km thick section of crust, there is a general increase in whole-rock δ 18O value with increasing depth. This is the reverse of what is normal in the crust, largely because the collar rocks have δ 18O values that are unusually low in comparison with metamorphosed sedimentary rocks worldwide. The collar rocks have δD values ranging from −35 to −115‰ (average −62‰, n = 29), which are consistent with interaction with water of meteoric origin, having a δD of about −25 to −45‰. We suggest that fluid movement through the collar rocks was enhanced by impact-induced secondary permeability in the dome structure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
3.
经从岩石学、矿物学、地球化学等方面对燕山期太山庙花岗岩体详细研究,认为该岩体侵入为一重要构造热事件,控制着区内多个多金属矿床的形成与规模。本文着重探讨和阐述太山庙花岗岩体特征及其对周边矿床的控矿关系。  相似文献   
4.
Evidence on the Paleozoic granitoids of the eastern part of the Central Asian Fold Belt (CAFB) was analyzed. A tectonic chart of orogenic belts was compiled. Sketch maps were constructed for the geodynamic settings of the formation of Paleozoic granitoids and the extensiveness of their occurrence. Two types of deep controlling structures were distinguished: zones of lithospheric faults and plumes, including the newly recognized Jiamusi-Bureya plume. It was sown that the distribution of large and superlarge Paleozoic ore deposits is related to these structures, primarily to plumes. Sites promising for large and superlarge deposits related to the Paleozoic granitoid magmatism were determined in the Russian Far East.  相似文献   
5.
The Cretaceous-Paleogene granites of the Eastern Sikhote Alin volcanic belt (ESAVB) and Late Cretaceous granitoids of the Tatibin Series (Central Sikhote Alin) are subdivided into three groups according to their oxygen isotope composition: group I with δ18O from +5.5 to +6.5‰, group II with δ18O from +7.6 to +10.2‰, and group III with less than +4.5‰. Group I rocks are similar in oxygen isotope composition to that of oceanic basalts and can be derived by melting of basaltic crust. Group II (rocks of the Tatibin Series) have higher δ18O, which suggests that their parental melts were contaminated by sedimentary material. The low 18O composition of group III rocks can be explained by their derivation from 18O-depleted rocks or by subsolidus isotopic exchange with low-18O fluid or meteoric waters. The relatively low δ18O and 87Sr/86Sr in the granitoids of Primorye suggest their derivation from rocks with a short-lived crustal history and can result from the following: (1) melting of sedimentary rocks enriched in young volcanic material that was accumulated in the trench along the transform continental margin (granites of the Tatibin Series) and (2) melting of a mixture of abyssal sediments, ocean floor basalts, and upper mantle in the lithospheric plate that subsided beneath the continent in the subduction zone (granites of the ESAVB).  相似文献   
6.
Major, trace element compositions and Sr–Nd isotopic characteristics of charnockitic gneisses from the Southern Granulite Terrain (SGT), South India are presented. The study region encompasses the central segment of the Cauvery Shear Zone system (CSZ) and regions within the Madurai Block (MB) immediately south of it (designated here as the CSZ/MB and MB domains). Differences in the compositions and source characteristics between charnockitic rocks of the CSZ vis-à-vis those of the CSZ/MB and MB regions are highlighted. Foremost, the charnockites and enderbites of the CSZ show highly fractionated REE patterns with positive Eu-anomalies, depleted HREE, Y and near chondritic εNd0 and initial-87Sr/86Sr at ca. 2.5 Ga, consistent with hydrous partial melting of amphibolitic crust with residual garnet and hornblende for the parental melts. By contrast, modeled at ca. 1.8 Ga and 0.8 Ga, the CSZ/MB and MB charnockitic rocks, which show a wider range of Ti and P, relatively lower degree of HREE depletion, commonly negative Eu-anomalies and undepleted Y, present clear evidence for involvement of Archaean crustal components in sources of their magmatic protoliths. There is also evidence for significant intracrustal melting processes within a thickened crust at elevated temperatures between 800 and 1000 °C. Implications to the controversial Archaean–Neoproterozoic terrane boundary problem of the SGT are discussed.  相似文献   
7.
8.
The Proterozoic (950 Ma) Lyngdal granodiorite of southern Norwaybelongs to a series of hornblende–biotite metaluminousferroan granitoids (HBG suite) coeval with the post-collisionalRogaland Anorthosite–Mangerite–Charnockite (AMC)suite. This granitoid massif shares many geochemical characteristicswith rapakivi granitoids, yet granodiorites dominate over granites.To constrain both crystallization (P, T, fO2, H2O in melt) andmagma generation conditions, we performed crystallization experimentson two samples of the Lyngdal granodiorite (with 60 and 65 wt% SiO2) at 4–2 kbar, mainly at fO2 of NNO (nickel–nickeloxide) to NNO + 1, and under fluid-saturated conditions withvarious H2O–CO2 ratios for each temperature. Comparisonbetween experimental phase equilibria and the mineral assemblagein the Lyngdal granodiorite indicates that it crystallized between4 and 2 kbar, from a magma with 5–6 wt % H2O at an fO2of NNO to NNO + 1. These oxidized and wet conditions sharplycontrast with the dry and reduced conditions inferred for thepetrogenesis of the AMC suite and many other rapakivi granitesworldwide. The high liquidus temperature and H2O content ofthe Lyngdal granodiorite imply that it is not a primary magmaproduced by the partial melting of the crust but is derivedby the fractionation of a mafic magma. Lyngdal-type magmas appearto have volcanic equivalents in the geological record. In particular,our results show that oxidized high-silica rhyolites, such asthe Bishop Tuff, could be derived via fractionation of oxidizedintermediate magmas and do not necessarily represent primarycrustal melts. This study underlines the great variability ofcrystallization conditions (from anhydrous to hydrous and reducedto oxidized) and petrogenetic processes among the metaluminousferroan magmas of intermediate compositions (granodiorites,quartz mangerites, quartz latites), suggesting that there isnot a single model to explain these rocks. KEY WORDS: ferroan granitoids; crystallization conditions; experiments; Norway; Sveconorwegian; Bishop Tuff  相似文献   
9.
门巴地区晚三叠世花岗岩主要出露在西藏冈底斯构造带的弧背断隆上,主要岩石类型为黑云角闪花岗闪长岩和黑云二长花岗岩。岩石为钙碱性,具有富SiO2、K2O的特点。K2O/Na2O平均为1.13,相对富钾。Al2O3变化于13.27%~15.53%之间,A/CNK平均为1.0,为准铝质岩石。花岗岩体稀土元素总量∑REE变化于99.5×10-6~294.72×10-6之间,轻稀土元素富集,重稀土元素亏损,具弱至中等的负Eu异常。微量元素以富K、Rb、Ba、Th等大离子亲石元素和亏损Nb、Ta、Y、Yb等高场强元素为特征。岩石学和岩石地球化学研究表明,该时代的花岗岩具I型花岗岩的特点,形成于岛弧环境,是新特提斯洋早期俯冲作用的产物。同时它也暗示着冈底斯岩浆弧带在晚三叠世就已成雏形。  相似文献   
10.
Many studies have shown systematic correlations between the composition of plutons worldwide and the metal content of associated skarns. This is the first report of similar correlations between the composition of Çelebi granitoid and skarns of the Çelebi district in Central Anatolia, Turkey. The Çelebi district is well known for its polymetallic Fe–W and Cu vein ores. These are hosted by calcic skarn zones. Both exoskarns (pyroxene–garnet) and endoskarns (epidote–pyroxene) occur in the district formed mainly along the granitoid contacts and along the fractures within the marble. Based on mineralogy, petrology and geochemistry, two different igneous rocks were recognized in the Çelebi granitoid, referred to as leucocratic (felsic) and mesocratic (intermediate) Çelebi granitoid. The leucocratic Çelebi occurs as dominant rock type, and is classified as granite. The mesocratic Çelebi is not widespread and is classified as adamellite, tonalite, quartz monzonite and quartz monzodiorite. The mesocratic Çelebi has I-type characteristics, and have subalkaline, calc-alkaline and metaluminous characteristics like most worldwide skarn granitoids.A post-collisional tectonic setting is proposed on the basis of field evidence, the relative timing of intrusions with respect to metamorphic and obducted ophiolitic rocks and trace element geochemistry. The high abundance of La and Ce and the enrichment of V in mafic components suggest that Çelebi granitoids are formed by partial melting of mantle rocks, but have been contaminated by interaction with continental crust involving possible magma mixing processes (i.e. mixing of coexisting felsic and mafic magmas). In the district, the mesocratic type and mafic microgranular enclaves (MME) mainly within leucocratic type represent a mafic underplating magma that was mixed with and/or injected into felsic magma of the leucocratic type.The present study shows that Fe mineralization is associated with mesocratic Çelebi type, whereas W mineralization is associated with leucocratic type. Mesocratic Çelebi granitoid is significantly different from the worldwide average of plutons associated with Fe skarns. In particular, MgO vs. SiO2, FeOt+CaO+Na2O/K2O vs. SiO2, Fe2O3/Fe2O3+FeO vs. SiO2 and V vs. Ni vary from typical values (are lower than values typical for plutons associated with Fe skarns) for plutons associated with Fe skarns. Instead, it resembles the geochemical characteristics of plutons associated with worldwide Cu and possibly Au skarns. This suggests new exploration possibilities for copper and gold in the Çelebi district.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号