首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   2篇
地球物理   6篇
地质学   29篇
  2014年   1篇
  2011年   1篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   
2.
Phase relations in Mg0.5Fe0.5SiO3 and Mg0.25Fe0.75SiO3 were investigated in a pressure range from 72 to 123 GPa on the basis of synchrotron X-ray diffraction measurements in situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). Results demonstrate that Mg0.5Fe0.5SiO3 perovskite is formed as a single phase at 85–108 GPa and 1800–2330 K, indicating a high solubility of FeO in (Mg,Fe)SiO3 perovskite at high pressures. Post-perovskite appears coexisting with perovskite in Mg0.5Fe0.5SiO3 above 106 GPa at 1410 K, the condition very close to the post-perovskite phase transition boundary in pure MgSiO3. The coexistence of perovskite and post-perovskite was observed to 123 GPa. In addition, post-perovskite was formed coexisting with perovskite also in Mg0.25Fe0.75SiO3 bulk composition at 106–123 GPa. In contrast to earlier experimental and theoretical studies, these results show that incorporation of FeO stabilizes perovskite at higher pressures. This could be due to a larger ionic radius of Fe2+ ion, which is incompatible with a small Mg2+ site in the post-perovskite phase.  相似文献   
3.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010), and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100). [001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned.  相似文献   
4.
Electrical conductivity of the lower mantle-like assemblage (Mg,Fe)SiO3 perovskite-(Mg,Fe)O magnesiowüstite is usually analyzed using the quasi-chemical Arrhenian approach of diffusion. The conductivity of this assemblage has often been attributed to hopping of small polarons, because of the low value of the activation energy and the small negative activation volume. However, the solid-state physics approach can provide more arguments, for or against conduction by polarons. We have tried to bridge the gap between the two approaches and identify the physical quantities entering the phenomenological activation parameters. In particular, we have investigated the pressure dependence of the activation energy, and the physical meaning of the activation volume. Hopping is controlled by the binding energy of the polaron and by the value of the exchange integral, which increases with pressure causing the observed decrease of the activation energy. From the physical theory and the results of experiments at pressures up to 40 GPa and temperatures up to 400 C, we have estimated the values of parameters characteristic of polarons: radius, mobility, time between jumps and adiabaticity. These values are compatible with conduction by small adiabatic polarons. The consequences for extrapolations to lower mantle conditions of the presence of a temperature dependent preexponential term in the expression for conductivity have been examined. It was found that the extrapolations are not significantly different from those using the Arrhenius equation. Received: 5 November 1998 / Revised, accepted: 4 May 1999  相似文献   
5.
钙钛矿蠕变对俯冲带震源深度极限的约束   总被引:1,自引:1,他引:0       下载免费PDF全文
许俊闪 《地球物理学报》2014,57(10):3218-3225
本文利用林伍德石、钙钛矿两种矿物在不同差应力下随温度变化的蠕变曲线,通过约束温度条件和板块俯冲引起的弹性应变率,得到了俯冲带670 km深度可能的应力范围. 结果显示,在俯冲带670 km深度基于林伍德石蠕变得到应力大小可能超过100 MPa,而相变为钙钛矿后仅为0.1~10 MPa. 通过分析认为钙钛矿的Si扩散引起的快速应变率使得670 km更深深度的俯冲带无法支持较大的应力,可能是下地幔地震终止的原因,而不需要考虑亚稳态相变导致反裂隙断层的消失或林伍德石分解后超塑性等影响.  相似文献   
6.
Orthorhombic MgSiO3 perovskite is thought to be the most abundant mineral in the mantle of the Earth. Its bulk properties have been widely studied, but many geophysical and rheological processes are also likely to depend upon its surface and grain boundary properties. As a first step towards modelling these geophysical properties, we present here an investigation of the structures and energetics of the surfaces of MgSiO3-perovskite, employing both shell-model atomistic effective-potential simulations, and density-functional-theory (DFT) calculations. Our shell-model calculations predict the {001} surfaces to be the energetically most stable surfaces: the calculated value of the surface energy being 2.2 J/m2 for the MgO-terminated surface, which is favoured over the SiO2-terminated surface (2.7 J/m2). Also for the polar surfaces {111}, {101} and {011} the MgO-terminated surfaces are energetically more stable than the Si-terminated surfaces. In addition we report the predicted morphology of the MgSiO3 perovskite structure, which is dominated by the energetically most stable {001} and {110} surfaces, and which appears to agree well with the shape of grown single crystals.  相似文献   
7.
Phase relations in the system Mg4Si4O12-Mg3Al2Si3O12 were examined at pressures of 19-27 GPa and relatively low temperatures of 800-1000 °C using a multianvil apparatus to clarify phase transitions of pyroxene-garnet assemblages in the mantle. Both of glass and crystalline starting materials were used for the experiments. At 1000 °C, garnet solid solution (s.s.) transforms to aluminous ilmenite s.s. at 20-26 GPa which is stable in the whole compositional range in the system. In Mg4Si4O12-rich composition, ilmenite s.s. transforms to a single-phase aluminous perovskite s.s., while Mg3Al2Si3O12-rich ilmenite s.s. dissociates into perovskite s.s. and corundum s.s. These newly determined phase relations at 1000 °C supersede preliminary phase relations determined at about 900 °C in the previous study. The phase relations at 1000 °C are quite different from those reported previously at 1600 °C where garnet s.s. transforms directly to perovskite s.s. and ilmenite is stable only very close to Mg4Si4O12. The stability field of Mg3Al2Si3O12 ilmenite was determined at 800-1000 °C and 25-27 GPa by reversed phase boundaries. In ilmenite s.s., the a-axis slightly increases but the c-axis and molar volume decrease substantially with increasing Al2O3 content. Enthalpies of ilmenite s.s. were measured by differential drop-solution calorimetry method using a high-temperature calorimeter. The excess enthalpy of mixing of ilmenite s.s. was almost zero within the errors. The measured enthalpies of garnet-ilmenite and ilmenite-perovskite transitions at 298 K were 105.2±10.4 and 168.6±8.2 kJ/mol, respectively, for Mg4Si4O12, and 150.2±15.9 and 98.7±27.3 kJ/mol, respectively, for Mg3Al2Si3O12. Thermodynamic calculations using these data give rise to phase relations in the system Mg4Si4O12-Mg3Al2Si3O12 at 1000 and 1600 °C that are generally consistent with those determined experimentally, and confirm that the single-phase field of ilmenite expands from Mg4Si4O12 to Mg3Al2Si3O12 with decreasing temperature. The earlier mentioned phase relations in the simplified system as well as those in the Mg2SiO4-Fe2SiO4 system are applied to estimate mineral proportions in pyrolite as a function of depth along two different geotherms: one is a horizontally-averaged temperature distribution in a normal mantle, and the other being 600 °C lower than the former as a possible representative geotherm in subducting slabs. Based on the previously described estimated mineral proportions versus depth along the two geotherms, density and compressional and shear wave velocities are calculated as functions of depth, using available mineral physics data. Along a normal mantle geotherm, jumps of density and velocities at about 660 km corresponding to the post-spinel transition are followed by steep gradients due to the garnet-perovskite transition between 660 and 710 km. In contrast, along a low-temperature geotherm, the first steep gradients of density and velocities are due to the garnet-ilmenite transition between 610 and 690 km. This is followed by abrupt jumps at about 690 km for the post-spinel transition, and steep gradients between 700 and 740 km that correspond to the ilmenite-perovskite transition. In the latter profile along the low-temperature geotherm, density and velocity increases for garnet-ilmenite and ilmenite-perovskite transitions are similar in magnitude to those for the post-spinel transition. The likely presence of ilmenite in cooler regions of subducting slabs is suggested by the fact that the calculated velocity profiles along the low-temperature geotherm are compatible with recent seismic observations indicating three discontinuities or steep velocity gradients at around 600-750 km depth in the regions of subducting slabs.  相似文献   
8.
In situ X-ray observations of the phase transition from ilmenite to perovskite structure in MnGeO3 were carried out in a Kawai-type high-pressure apparatus interfaced with synchrotron radiation. The phase boundary between the ilmenite and perovskite structures in the temperature range of 700–1,400°C was determined to be P (GPa) = 16.5(±0.6) − 0.0034(±0.0006)T (°C) based on Anderson’s gold pressure scale. The Clapeyron slope, dP/dT, determined in this study is consistent with that for the transition boundary between the ilmenite and the perovskite structure in MgSiO3.  相似文献   
9.
The stability and high-pressure behavior of perovskite structure in MnGeO3 and CdGeO3 were examined on the basis of in situ synchrotron X-ray diffraction measurements at high pressure and temperature in a laser-heated diamond-anvil cell. Results demonstrate that the structural distortion of orthorhombic MnGeO3 perovskite is enhanced with increasing pressure and it undergoes phase transition to a CaIrO3-type post-perovskite structure above 60 GPa at 1,800 K. A molar volume of the post-perovskite phase is smaller by 1.6% than that of perovskite at equivalent pressure. In contrast, the structure of CdGeO3 perovskite becomes less distorted from the ideal cubic perovskite structure with increasing pressure, and it is stable even at 110 GPa and 2,000 K. These results suggest that the phase transition to post-perovskite is induced by a large distortion of perovskite structure with increasing pressure.  相似文献   
10.
A series of fluoride perovskites related to neighborite was investigated using X-ray and neutron diffraction techniques, and Rietveld profile refinement of powder diffraction data. The series (Na1? x K x )MgF3 comprises orthorhombic (Pbnm, a?≈? , b?≈? , c?≈?2a p , Z=4) perovskites in the compositional range 0?≤?x?≤?0.30, tetragonal perovkites (P4/mbm, a?≈? , c?≈?a p , Z=2) in the range 0.40?≤?x?≤?0.46, and cubic phases (Pmm, Z=1) for x?>?0.50. The structure of the orthorhombic neighborite is derived from the perovskite aristotype by rotation of MgF6 octahedra about the [110] and [001] axes of the cubic subcell. The degree of rotation, measured as a composite tilt Φ about the triad axis, varies from 18.2° at x=0 to 11.2° at x=0.30 (as determined from the fractional atomic coordinates). Orthorhombic neighborite also shows a significant displacement of Na and K from the “ideal” position (≤0.25?Å). The tetragonal members of the neighborite series exhibit only in-phase tilting about the [001] axis of the cubic subcell (φ) ranging from 4.5° to 4.8° (determined from the atomic coordinates). The solid solution (Na1? x K x )MgF3, shows a regular variation of unit-cell dimensions with composition from 3.8347?Å for the end-member NaMgF3 (reduced to pseudocubic subcell, a p ) to 3.9897?Å for KMgF3. This variation is accompanied by increasing volumes of the A-site polyhedra, whereas the volume of MgF6 octahedra initially decreases (up to x=0.40), and then increases concomitantly with K content. The polyhedral volume ratio, V A /V B , gradually increases towards the tetragonal structural range, in agreement with diminishing octahedral rotation in the structure. The P4/mbm-type neighborite has an “anomalous” polyhedral volume ratio (ca. 5.04) owing to the critical compression of MgF6 polyhedra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号