首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2416篇
  免费   318篇
  国内免费   344篇
测绘学   107篇
大气科学   207篇
地球物理   588篇
地质学   610篇
海洋学   247篇
天文学   800篇
综合类   70篇
自然地理   449篇
  2024年   5篇
  2023年   19篇
  2022年   23篇
  2021年   32篇
  2020年   54篇
  2019年   64篇
  2018年   57篇
  2017年   58篇
  2016年   60篇
  2015年   93篇
  2014年   100篇
  2013年   94篇
  2012年   77篇
  2011年   75篇
  2010年   63篇
  2009年   136篇
  2008年   207篇
  2007年   189篇
  2006年   184篇
  2005年   153篇
  2004年   130篇
  2003年   147篇
  2002年   142篇
  2001年   120篇
  2000年   114篇
  1999年   107篇
  1998年   117篇
  1997年   68篇
  1996年   67篇
  1995年   53篇
  1994年   54篇
  1993年   38篇
  1992年   32篇
  1991年   23篇
  1990年   34篇
  1989年   31篇
  1988年   17篇
  1987年   13篇
  1986年   10篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有3078条查询结果,搜索用时 31 毫秒
1.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
2.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
3.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
4.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
7.
In the frame of 2D-static problems one approaches the problem of elastic-NRT (not-resisting tension) semi-plane loaded on its limit line. This problem is intended to model the stress situation induced in the soil by a foundation structure. The solution, in terms of activated stress field, is searched for in the class of stress fields satisfying equilibrium and admissibility conditions, by applying an energy approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
8.
We present a quantitative estimate of the relativistic corrections to the thermal SZ power spectrum produced by the energetic electrons in massive clusters. The corrections are well within 10% for current experiments with working frequencies below v < 100 GHz, but become non-negligible at high frequencies v > 350 GHz. Moreover, the corrections appear to be slightly smaller at higher l or smaller angular scales. We conclude that there is no need to include the relativistic corrections in the theoretical study of the SZ power spectrum especially at low frequencies unless the SZ power spectrum is used for precision cosmology.  相似文献   
9.
A full-sky template map of the Galactic free–free foreground emission component is increasingly important for high-sensitivity cosmic microwave background (CMB) experiments. We use the recently published Hα data of both the northern and southern skies as the basis for such a template.
The first step is to correct the Hα maps for dust absorption using the 100-μm dust maps of Schlegel, Finkbeiner & Davis. We show that for a range of longitudes, the Galactic latitude distribution of absorption suggests that it is 33 per cent of the full extragalactic absorption. A reliable absorption-corrected Hα map can be produced for ∼95 per cent of the sky; the area for which a template cannot be recovered is the Galactic plane area  | b | < 5°, l = 260°–0°–160°  and some isolated dense dust clouds at intermediate latitudes.
The second step is to convert the dust-corrected Hα data into a predicted radio surface brightness. The free–free emission formula is revised to give an accurate expression (1 per cent) for the radio emission covering the frequency range 100 MHz–100 GHz and the electron temperature range 3000–20 000 K. The main uncertainty when applying this expression is the variation of electron temperature across the sky. The emission formula is verified in several extended H  ii regions using data in the range 408–2326 MHz.
A full-sky free–free template map is presented at 30 GHz; the scaling to other frequencies is given. The Haslam et al. all-sky 408-MHz map of the sky can be corrected for this free–free component, which amounts to a  ≈6  per cent correction at intermediate and high latitudes, to provide a pure synchrotron all-sky template. The implications for CMB experiments are discussed.  相似文献   
10.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号