首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   8篇
  国内免费   18篇
测绘学   1篇
地球物理   5篇
地质学   81篇
综合类   11篇
自然地理   1篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2010年   2篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   36篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
Amongst all the perceptible igneous manifestations (volcanic tuffs and agglomerates, minor rhyolitic flows and andesites, dolerite dykes and sills near the basin margins, etc.) in the Vindhyan basin, the two Mesoproterozoic diamondiferous ultramafic pipes intruding the Kaimur Group of sediments at Majhgawan and Hinota in the Panna area are not only the most conspicuous but also well-known and have relatively deeper mantle origin. Hence, these pipes constitute the only yet available ‘direct’ mantle samples from this region and their petrology, geochemistry and isotope systematics are of profound significance in understanding the nature of the sub-continental lithospheric mantle beneath the Vindhyan basin. Their emplacement age (∼ 1100 Ma) also constitutes the only reliable minimum age constrain on the Lower Vindhyan Group of rocks. The Majhgawan and Hinota pipes share the petrological, geochemical and isotope characteristics of kimberlite, orangeite (Group II kimberlite) and lamproite and hence are recognised as belonging to a ‘transitional kimberlite-orangeite-lamproite’ rock type. The namemajhagwanite has been proposed by this author to distinguish them from other primary diamond source rocks. The parent magma of the Majhgawan and Hinota pipes is envisaged to have been derived by very small (<1%) degrees of partial melting of a phlogopite-garnet lherzolite source (rich in titanium and barium) that has been previously subjected to an episode of initial depletion (extensive melting during continent formation) and subsequent metasomatism (enrichment). There is absence of any subduction-related characteristics, such as large negative anomalies at Ta and Nb, and therefore, the source enrichment (metasomatism) of both these pipes is attributed to the volatile- and K-rich, extremely low-viscosity melts that leak continuously to semi-continuously from the asthenosphere and accumulate in the overlying lithosphere. Lithospheric/crustal extension, rather than decompression melting induced by a mantle plume, is favoured as the cause of melting of the source regions of Majhgawan and Hinota pipes. This paper is a review of the critical evaluation of the published work on these pipes based on contemporary knowledge derived from similar occurrences elsewhere.  相似文献   
2.
P. Peltonen  K. A. Kinnunen  H. Huhma 《Lithos》2002,63(3-4):151-164
Diamondiferous Group A eclogites constitute a minor portion of the mantle-derived xenoliths in the eastern Finland kimberlites. They have been derived from the depth interval 150–230 km where they are inferred to occur as thin layers or small pods within coarse-grained garnet peridotites. The chemical and isotopic composition of minerals suggest that they represent (Proterozoic?) mantle-derived melts or cumulates rather than subducted oceanic lithosphere. During magma ascent and emplacement of the kimberlites, the eclogite xenoliths were mechanically and chemically rounded judging from the types of surface markings. In addition, those octahedral crystal faces of diamonds that were partially exposed from the rounded eclogite xenolith became covered by trigons and overlain by microlamination due to their reaction with the kimberlite magma. The diamonds bear evidence of pervasive plastic deformation which is not, however, evident in the eclogite host. This suggests that annealing at ambient lithospheric temperatures has effectively recrystallised the silicates while the diamond has retained its lattice imperfections and thus still has the potential to yield information about ancient mantle deformation. One of our samples is estimated to contain approximately 90,000 ct/ton diamond implying that some diamonds occur within very high-grade pods or thin seams in the lithospheric mantle. To our knowledge, this is one of the most diamondiferous samples described.  相似文献   
3.
The Uintjiesberg kimberlite diatreme occurs within the Proterozoic Namaqua–Natal Belt, South Africa, approximately 60 km to the southwest of the Kaapvaal craton boundary. It is a group I, calcite kimberlite that has an emplacement age of 100 Ma. Major and trace element data, in combination with petrography, are used to evaluate its petrogenesis and the nature of its source region. Macrocryst phases are predominantly olivine with lesser phlogopite, with very rare garnet and Cr-rich clinopyroxene. Geochemical variation amongst the macrocrystic samples (Mg# 0.85–0.87, SiO2=27.0–29.3%, MgO=26.1–30.5%, CaO=10.9–13.5%) is shown to result from 10% to 40% entrainment and partial assimilation of peridotite xenoliths, whereas that shown by the aphanitic samples (Mg# 0.80–0.83, SiO2=19.1–23.0%, MgO=17.9–23.9%, CaO=16.5–23.7%) is consistent with 7–25% crystal fractionation of olivine and minor phlogopite. Changing trajectories on chemical variation diagrams allow postulation of a primary magma composition with 25% SiO2, 26% MgO, 2.3% Al2O3, 5%H2O, 8.6% CO2 and Mg#=0.85.

Forward melting models, assuming 0.5% melting, indicate derivation of the primary Uintjiesberg kimberlite magma from a source enriched in light rare earth elements (LREE) by 10× chondrite and heavy REE (HREE) by 0.8–2× chondrite, the latter being dependent on the proportion of residual garnet. Significant negative Rb, K, Sr, Hf and Ti anomalies present in the inferred primary magma composition are superimposed on otherwise generally smooth primitive mantle-normalized trace element patterns, and are inferred to be a characteristic of the primary magma composition. The further requirement for a source with chondritic or lower HREE abundances, residual olivine with high Fo content (Fo94) suggests derivation from a mantle previously depleted in mafic melt but subsequently enriched in highly incompatible elements prior to kimberlite genesis. These requirements are interpreted in the context of melting of continental lithospheric mantle previously enriched by metasomatic fluids derived from a sublithospheric (plume?) source.  相似文献   

4.
Metasomatism accompanying kimberlite emplacement is a worldwide phenomenon, although infrequently described or recognised. At the Cambrian-aged Murowa and Sese kimberlite clusters located within the Archean Zimbabwe Craton just north of the boundary with the Limpopo Mobile Zone in southern central Zimbabwe, the metasomatism is intense and well exposed and the processes can be readily studied. Dykes, sills and the root zones of pipes are exposed at the current erosion level. Kimberlite lithologies present are hypabyssal macrocrystic kimberlite (“HMK”), HMK breccia, and tuffisitic kimberlite breccia (“TKB”) including minor lithic tuffisitic kimberlite breccia (“LTKB”). Country rocks are 2.6 Ga Chibi and Zimbabwe granite batholiths emplaced into 2.6–2.9 Ga or earlier Archean tonalitic gneiss and greenstones. During initial metasomatism, the granites become spotted with green chlorite, needles of alkaline amphiboles (winchite, riebeckite, arfvedsonite) and pyroxenes (aegirine–augite) with minor carbonate and felts of talc. Oligoclase feldspar becomes converted to albite, extensively altered, dusted and reddened with hematite, whereas K-feldspar remains unaffected. The granites become converted to syenite through removal of quartz. More intense metasomatism at Murowa and Sese results in veins of green metasomatite which cut and disrupt the granite. Progressive disruption entrains granite blocks, breaking down the granite still further, spalling off needle-like granite slivers, and so giving rise to LTKB. This process of disruption and entrainment appears to be the manner of initial development of the pipe structure. The chemistry of the metasomatite is intermediate between granite and kimberlite. Compared to granite country rock it has markedly higher Mg, Cr, Ni, CO2 and H2O+, higher Ca, Mn, Nb, Sr, P, Fe3+/Fe2+ ratio, U, Co, and Cu, approximately equal TiO2, K2O, Na2O, La, Ta, Rb, Zr, Zn and resultant lower SiO2, Al2O3, Ga and Y. The metasomatite Na2O/K2O ratio is slightly higher than that of the granite. The metasomatic process is broadly analogous to fenitisation of granitic wall rock accompanying carbonatite complex emplacement. The metasomatism at Murowa and Sese was caused by fluids from the rising but confined proto-kimberlite melt penetrating into cracks and matrix of granite country rock and reacting with it. These fluids were CO2-rich, hydrous, oxidising, enhanced in ultramafic elements and carried low levels of Na.  相似文献   
5.
This paper reports on the petrology and geochemistry of a diamondiferous peridotite xenolith from the Premier diamond mine in South Africa.

The xenolith is altered with pervasive serpentinisation of olivine and orthopyroxene. Garnets are in an advanced state of kelyphitisation but partly fresh. Electron microprobe analyses of the garnets are consistent with a lherzolitic paragenesis (8.5 wt.% Cr2O3 and 6.6 wt.% CaO). The garnets show limited variation in trace element composition, with generally low concentrations of most trace elements, e.g. Y (<11 ppm), Zr (<18 ppm) and Sr (<0.5 ppm). Garnet rare earth element concentrations, when normalised against the C1 chondrite of McDonough and Sun (Chem. Geol. 120 (1995) 223), are characterised by a rare earth element pattern similar to garnet from fertile lherzolite.

All diamonds recovered are colourless. Most crystals are sharp-edged octahedra, some with minor development of the dodecahedral form. A number of crystals are twinned octahedral macles, while aggregates of two or more octahedra are also common. Mineral inclusions are rare. Where present they are predominantly small black rosettes believed to consist of sulfide. In one instance a polymineralic (presumably lherzolitic) assemblage of reddish garnet, green clinopyroxene and a colourless mineral is recognised.

Infrared analysis of the xenolith diamonds show nitrogen contents generally lower than 500 ppm and variable nitrogen aggregation state, from 20% to 80% of the ‘B’ form. When plotted on a nitrogen aggregation diagram a well defined trend of increasing nitrogen aggregation state with increasing nitrogen content is observed. Carbon isotopic compositions range from −3.6 ‰ to −1.3 ‰. These are broadly correlated with diamond nitrogen content as determined by infrared spectroscopy, with the most negative C-isotopic compositions correlating with the lowest nitrogen contents.

Xenolith mantle equilibration temperatures, calculated from nitrogen aggregation systematics as well as the Ni in garnet thermometer are on the order of 1100 to 1200 °C.

It is concluded that the xenolith is a fertile lherzolite, and that the lherzolitic character may have resulted from the total metasomatic overprinting of pre-existing harzburgite. Metasomatism occurred prior to, or accompanied, diamond growth.  相似文献   

6.
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields.  相似文献   
7.
Primary economic diamond deposit modelling has rarely been documented in the public domain. This paper presents information collected from significantly diamondiferous kimberlite pipes located near Lac de Gras in the Arctic region of Canada's Northwest Territories. The resource estimation process is widely accepted as a cyclical iteration of data collection and evaluation processes. A resource database is typically assembled from a large inventory of exploration data. These data must be methodically quality checked before accepting the information for interpretive analysis. The foundation of a mineral resource model is based on clear understanding of the geology model along with subsidiary grade, volume, and density models. Defining these models is an iterative process of statistical analyses and interpretation. As a deposit progresses along a path towards development, reducing risk to acceptable levels is critical for identifying and realizing its maximum value.  相似文献   
8.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   
9.
Diamond exploration in India over the past decade has led to the discovery of over 80 kimberlite-inferred and lamproite-related intrusions in three of the four major Archean cratons that dominate the subcontinent. These intrusions are Proterozoic (1.1 Ga), and are structurally controlled: locally (at the intersections of faults); regionally (in a 200 km wide, 1000 km long diamond corridor); and globally (in the reconstructed supercontinent of Rodinia). The geochemistry of 57 samples from 13 intrusions in the southern Dharwar Craton of Andhra Pradesh has been determined by XRF spectrometry. The bodies are iron-rich with mg#=50–70 and are neither archetypal kimberlites nor ideal lamproites; this may be the underlying reason that conventional exploration techniques have thus far failed to locate the primary sources of India's historically famous diamonds. The two major fields of kimberlite-clan rocks (KCR) in the Dharwar Craton, Wajrakur and Narayanpet, are separated by a NW–SE trending, transcontinental (Mumbai-Chennai) gravity lineament. About 80% of intrusions in Wajrakur are diamondiferous, but diamonds have not yet been reported in Narayanpet. The gravity anomaly may mark the boundary of an architectural modification in the keel of the sub-continental lithosphere, a suggestion that is supported by differences in kimberlite mineralogy, chemistry, mantle xenoliths, structural setting and crustal host rocks.  相似文献   
10.
Diamondiferous kimberlites occur in eastern Finland, in the areas of Kaavi–Kuopio and Kuhmo. Active diamond exploration has been ongoing in the country for over two decades, but the Karelian craton still remains under explored given its size and potential. In order to develop techniques that can be applied to diamond exploration in glaciated terrains, the Geological Survey of Finland (GTK) carried out a detailed heavy mineral and geochemical survey of Quaternary till in 2001–2003 around two of the known kimberlitic bodies in Finland, Pipe 7 in Kaavi and Dyke 16 in Kuhmo. The mineralogical and geochemical signatures of these two kimberlites were studied in the basal till deposited down-ice from the targets. The kimberlites were selected to represent two different types in terms of shape, size, age and petrology, as well as showing contrasting country rocks and Quaternary deposits. Till samples up to 60 kg in weight were taken by excavator and by drill rig. Kimberlitic indicator mineral grains (0.25–1.0 mm) were concentrated using a GTK modified 3″Knelson Concentrator. Fine fractions (< 0.063 mm) of selected samples were analyzed by XRF and ICP-MS. The indicator grains down-ice from Pipe 7 form a well-defined fan in the basal till that can be followed for at least 2 km with a maximum concentration at 1.2 km distance from the pipe. Another kimberlitic body discovered during the study 300 m down-ice from Pipe 7 demonstrates that there are in fact at least two superimposed indicator fans. The results do not rule out the possibility of even more undiscovered kimberlitic sources in the area. In contrast, the indicator dispersal trail from Dyke 16 is shorter (1 km) and less well-defined than that at Kaavi, mainly due to the lower indicator content in the kimberlite itself and subsequently in till, as well as a large population of background chromites in till. The latter population is likely having been derived from the Archean Näätäniemi serpentinite massif and the associated ultramafic metavolcanics of the Kuhmo greenstone belt, located ca. 30 km up-ice from the sampling area. The indicator maximum at Seitaperä dyke swarm occurs immediately down-ice from the kimberlite, after which the concentration drops rapidly. Results of this study contribute to the overall understanding of the Quaternary history of the Kaavi and Kuhmo areas, and more importantly, provide key information to diamond exploration in these particular regions and also elsewhere in glaciated terrains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号