首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   11篇
大气科学   12篇
地球物理   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
排序方式: 共有13条查询结果,搜索用时 171 毫秒
1.
Variability of Atlantic Meridional Overturning Circulation in FGOALS-g2   总被引:3,自引:0,他引:3  
The variability of Atlantic Meridional Overturning Circulation (AMOC) in the pre-industrial control experiment of the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) was investigated using the model outputs with the most stable state in a 512-yr time window from the total 1500-yr period of the experiment. The period of AMOC in FGOALS-g2 is double peaked at 20 and 32 years according to the power spectrum, and 22 years according to an auto-correlation analysis, which shows very obvious decadal variability. Like many other coupled climate models, the decadal variability of AMOC in FGOALS-g2 is closely related to the convection that occurs in the Labrador Sea region. Deep convection in the Labrador Sea in FGOALS-g2 leads the AMOC maximum by 3-4 years. The contributions of thermal and haline effects to the variability of the convection in three different regions [the Labrador, Irminger and Greenland-Iceland- Norwegian (GIN) Seas] were analyzed for FGOALS-g2. The variability of convection in the Labrador and Irminger Seas is thermally dominant, while that in the colder GIN Seas can be mainly attributed to salinity changes due to the lower thermal expansion. By comparing the simulation results from FGOALS-g2 and 11 other models, it was found that AMOC variability can be attributed to salinity changes for longer periods (longer than 35 years) and to temperature changes for shorter periods.  相似文献   
2.
This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP) simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3). FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs) with different sets of future emission, concentration, and land-use scenarios. All Tier 1 and 2 experiments were carried out and were initialized using historical runs. A branch run method was used for the ensemble simulations. Model outputs were three-hourly, six-hourly, daily, and/or monthly mean values for the primary variables of the four component models. An evaluation and analysis of the simulations is also presented. The present results are expected to aid research into future climate change and socio-economic development.  相似文献   
3.
Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases   总被引:1,自引:0,他引:1  
The present study examines simulated oceanic climatology in the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) forced by historical external forcing data. The oceanic temperatures and circulations in FGOALS-g2 were found to be comparable to those observed, and substantially improved compared to those simulated by the previous version, FGOALS-g1.0. Compared with simulations by FGOALS-g1.0, the shallow mixed layer depths were better captured in the eastern Atlantic and Pacific Ocean in FGOALS-g2. In the high latitudes of the Northern Hemisphere, the cold biases of SST were about 1°C–5°C smaller in FGOALS-g2. The associated sea ice distributions and their seasonal cycles were more realistic in FGOALS-g2. The pattern of Atlantic Meridional Overturning Circulation (AMOC) was better simulated in FGOALS-g2, although its magnitude was larger than that found in observed data. The simulated Antarctic Circumpolar Current (ACC) transport was about 140 Sv through the Drake Passage, which is close to that observed. Moreover, Antarctic Intermediate Water (AAIW) was better captured in FGOALS-g2. However, large SST cold biases (>3°C) were still found to exist around major western boundary currents and in the Barents Sea, which can be explained by excessively strong oceanic cold advection and unresolved processes owing to the coarse resolution. In the Indo-Pacific warm pool, the cold biases were partly related to the excessive loss of heat from the ocean. Along the eastern coast in the Atlantic and Pacific Oceans, the warm biases were due to overestimation of shortwave radiation. In the Indian Ocean and Southern Ocean, the surface fresh biases were mainly due to the biases of precipitation. In the tropical Pacific Ocean, the surface fresh biases (>2 psu) were mainly caused by excessive precipitation and oceanic advection. In the Indo-Pacific Ocean, fresh biases were also found to dominate in the upper 1000 m, except in the northeastern Indian Ocean. There were warm and salty biases (3°C–4°C and 1–2 psu) from the surface to the bottom in the Labrador Sea, which might be due to large amounts of heat transport and excessive evaporation, respectively. For vertical structures, the maximal biases of temperature and salinity were found to be located at depths of >600 m in the Arctic Ocean, and their values exceeded 4°C and 2 psu, respectively.  相似文献   
4.
This study mainly introduces the development of the Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOALS-g2) and the preliminary evaluations of its performances based on results from the pre-industrial control run and four members of historical runs according to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiment design. The results suggest that many obvious improvements have been achieved by the FGOALS-g2 compared with the previous version,FGOALS-g1, including its climatological mean states, climate variability, and 20th century surface temperature evolution. For example,FGOALS-g2 better simulates the frequency of tropical land precipitation, East Asian Monsoon precipitation and its seasonal cycle, MJO and ENSO, which are closely related to the updated cumulus parameterization scheme, as well as the alleviation of uncertainties in some key parameters in shallow and deep convection schemes, cloud fraction, cloud macro/microphysical processes and the boundary layer scheme in its atmospheric model. The annual cycle of sea surface temperature along the equator in the Pacific is significantly improved in the new version. The sea ice salinity simulation is one of the unique characteristics of FGOALS-g2, although it is somehow inconsistent with empirical observations in the Antarctic.  相似文献   
5.
Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.  相似文献   
6.
Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.  相似文献   
7.
为参加第六次国际耦合模式比较计划(CMIP6)和进一步提高模式的模拟能力,大气科学和地球流体力学数值模拟国家重点实验室(LASG)模式团队发展了新一代的格点大气版本的FGOALS-g耦合模式。新版本模式在大气分辨率、海洋网格,以及各分量模式的物理过程等方面都有一定的改进,并正在参与CMIP6最核心的试验以及多个CMIP6模式比较子计划试验。给定CMIP6外强迫,模式在工业革命前参照试验(piControl)和大气模式比较计划(AMIP)试验中模拟的初步结果都比较合理。  相似文献   
8.
FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化   总被引:4,自引:2,他引:2  
利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。  相似文献   
9.
Sea ice is an important component in the Earth’s climate system. Coupled climate system models are indispensable tools for the study of sea ice, its internal processes, interaction with other components, and projection of future changes. This paper evaluates the simulation of sea ice by the Flexible Global Ocean-Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2), in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5), with a focus on historical experiments and late 20th century simulation. Through analysis, we find that FGOALS-g2 produces reasonable Arctic and Antarctic sea ice climatology and variability. Sea ice spatial distribution and seasonal change characteristics are well captured. The decrease of Arctic sea ice extent in the late 20th century is reproduced in simulations, although the decrease trend is lower compared with observations. Simulated Antarctic sea ice shows a reasonable distribution and seasonal cycle with high accordance to the amplitude of winter-summer changes. Large improvement is achieved as compared with FGOALS-g1.0 in CMIP3. Diagnosis of atmospheric and oceanic forcing on sea ice reveals several shortcomings and major aspects to improve upon in the future: (1) ocean model improvements to remove the artificial island at the North Pole; (2) higher resolution of the atmosphere model for better simulation of important features such as, among others, the Icelandic Low and westerly wind over the Southern Ocean; and (3) ocean model improvements to accurately receive freshwater input from land, and higher resolution for resolving major water channels in the Canadian Arctic Archipelago.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号