首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  国内免费   7篇
大气科学   9篇
地球物理   1篇
天文学   1篇
  2023年   1篇
  2017年   1篇
  2014年   2篇
  2010年   1篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 281 毫秒
1.
2.
The strong heavy rainfall on 3-5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a...  相似文献   
3.
简要介绍了上海GPS综合应用网(SCGAN)情况,分析了该网从2002年6月投入正常运行后,获取的2002年入梅前后长江三角洲地区高分辨率可降水量(PWV)资料,描述了PWV所反映的长江三角洲地区的入梅过程和特点,以及把GPS/PWV同化到中尺度数值预报模式初始场中的试验。  相似文献   
4.
Mesoscale convective systems (MCSs) are classified and investigated through a statistical analysis of composite radar reflectivity data and station observations during June and July 2010-2012. The number of linear-mode MCSs is slightly larger than the number of nonlinear-mode MCSs. Eight types of linear-mode MCSs are identified: trailing stratiform MCSs (TS), leading stratiform MCSs (LS), training line/adjoining stratiform MCSs (TL/AS), back-building/quasi-stationary MCSs (BB), parallel stratiform MCSs (PS), bro- ken line MCSs (BL), embedded line MCSs (EL), and long line MCSs (LL). Six of these types have been identified in previous studies, but EL and LL MCSs are described for the first time by this study. TS, LS, PS, and BL MCSs are all moving systems, while TL/AS, BB, EL, and LL MCSs are quasi-stationary. The average duration of linear-mode MCSs is more than 7 h. TL/AS and TS MCSs typically have the longest durations. Linear-mode MCSs often develop close to the Yangtze River, especially over low-lying areas and river valleys. The diurnal cycle of MCS initiation over the Yangtze River valley contains multiple peaks. The vertical distribution of environmental wind is decomposed into storm-relative perpendicular and parallel wind components. The environmental wind field is a key factor in determining the organizational mode of a linear-mode MCS.  相似文献   
5.
The numerical forecasts of mei-yu front rainstorms in China has been an important issue. The intensity and pattern of the frontal rainfall are greatly influenced by the initial fields of the numerical model. The 4-dimensional variational data assimilation technology (4DVAR) can effectively assimilate all kinds of observed data, including rainfall data at the observed stations, so that the initial fields and the precipitation forecast can both be greatly improved. The non-hydrostatic meso-scale model (MM5) and its adjoint model are used to study the development of the mei-yu front rainstorm from 1200 UTC 25 June to 0600 UTC 26 June 1999. By numerical simulation experiments and assimilation experiments, the T106 data and the observed 6-hour rainfall data are assimilated. The influences of many factors, such as the choice of the assimilated variables and the weighting coefficient, on the precipitation forecast results are studied. The numerical results show that 4DVAR is valuable and important to mei-yu front rainfall prediction.  相似文献   
6.
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation cluster and also eliminated the erroneous rainfall successfully simulated the evolution of the observed MCS systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.  相似文献   
7.
江淮梅雨季节强降雨过程特征分析   总被引:6,自引:2,他引:4  
为了便于识别梅雨季节江淮地区的强降雨过程,促进汛期强降雨过程的预报方法研究,使用中国国家级地面气象站逐日观测资料,提出了一种划分江淮梅雨季节强降雨过程的客观方法,并对江淮梅雨季节内强降雨过程的特征进行了分析。结果表明:该方法能有效划分出江淮梅雨季节的强降雨过程,划分结果与预报业务中的划分结果具有较高的一致性,便于在业务中应用。在江淮梅雨季节内,梅雨期的强降雨过程存在明显的年际变化且与梅雨强、弱密切相关,强梅雨年具有较多的强降雨过程以及过程累积强降雨日,强梅雨年的强降雨过程具有持续性、反复性和频发性的特征。弱梅雨年则相反。近56年来梅雨期强降雨过程累积雨量在整个江淮地区有线性增加的趋势,且江苏南部至浙江北部地区雨量增大的趋势最为显著。梅雨期强降雨过程累积雨量及雨日的空间分布是一致的,最大区域中心均位于安徽西南部、江西东北部及湖北东部等地。按照此客观划分方法确定的梅雨期的强降雨过程累积雨量与梅雨期总雨量具有较为相似的时空变化特征。   相似文献   
8.
Diurnal variations of two mountain-plain solenoid (MPS) circulations associated with "first-step" terrain [Tibetan Plateau (TP)] and "second-step" terrain (high mountains between the TP and "east plains") in China and their influence on the south west vortex (SWV) and the mei-yu front vortex (MYFV) were investigated via a semi-idealized mesoscale numerical model [Weather Research and Forecasting (WRF)] simulation integrated with ten-day average fields (mei-yu period of 1-10 July 2007). The simulations successfully reproduced two MPS circulations related to first and second-step terrain, diurnal vari- ations from the eastern edge of the TP to the Yangtze River-Huaihe River valleys (YHRV), and two precipitation maximum centers related to the SWV, MYFV. Analyses of the averaged final seven-day simulation showed the different diurnal peaks of precipitation at different regions: from the aftemoon to early evening at the eastern edge of the TP; in the early evening to the next early morning in the Sichuan Basin (SCB); and in the late evening to the next early morning over the mei-yu front (MYF). Analyses of individual two-day cases confirmed that the upward branches of the nightlime MPS circulations enhanced the precipitation over the SWV and the MYFV and revealed that the eastward extension of the SWV and its con vection were conducive to triggering the MYFVs. The eastward propagation of a rainfall streak from the eastern edge of the TP to the eastern coastal region was primarily due to a series of convective activities of several systems from west to east, including the MPS between the TP and SCB, the SWV, the MPS between second-step terrain and tile east plains, and the MYFV.  相似文献   
9.
沈愈  梁萍 《气象》2007,33(7):112-118
为了建立长江中下游地区梅雨季节的新样本,采用以环流为主导的常规方法,利用NCEP/NCAR逐日再分析资料及长江中下游5站降水资料,对2006年长江中下游地区梅雨季节的特征量进行了诊断分析,并讨论了梅雨与夏季风的关系。结果表明,将6月5候和7月4候分别划为2006年长江中下游地区梅雨季节的起始和结束时间是较为合适的;2006年长江中下游地区梅雨季节对应的梅雨量较常年偏少,这与梅雨季节中印度夏季风和东亚夏季风(包括南海夏季风和副热带夏季风)强度较常年偏弱有关。  相似文献   
10.
选用2000—2020年自动站降水资料、热带气旋最佳路径数据集(CMA-STI)以及欧洲中期天气预报中心ERA5再分析资料,发现不到半数的热带气旋活动伴随江淮地区暴雨发生,且仅有3成的热带气旋存在时,江淮地区日降水达到当年梅雨期日均降水。除个别“转向型”及登陆后继续东移、北上的“西北型”热带气旋外,七成左右的热带气旋大多伴随有梅雨减弱现象,并利用WRF模式及热带气旋Bogus方法对2017年热带气旋“苗柏”和2019年热带气旋“丹娜丝”进行数值模拟,分析热带气旋的存在对梅雨季节降水的影响机制。结果表明:在模式能较好地模拟出两个热带气旋的路径及降水落区、强度的基础上,对比移除热带气旋前后的试验,西北路径的热带气旋“苗柏”登陆前,南缘偏西气流加强低空急流,江淮地区切变线加强,登陆后低压北抬,副高稳定,形成有利于降水的环流形势;剔除“苗柏”后,低空急流断裂,副高南退,水汽输送带南移,长江中下游地区降水减少。转向型热带气旋“丹娜丝”北移,伴随副高北抬,对流性不稳定减小,垂直上升运动减弱,西太平洋的水汽被大量输送到热带气旋中心附近,故输送至江淮地区的水汽减弱,降水减少,促使梅雨提前结束;而剔除“...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号