首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However,the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front,and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently,the heavy rainfall forecast was improved.  相似文献   

2.
We investigated the impact of tuning the length scale of the background error covariance in the Weather Research and Forecasting(WRF) three-dimensional variational assimilation(3DVAR) system.In particular,we studied the effect of this parameter on the assimilation of high-resolution surface data for heavy rainfall forecasts associated with mesoscale convective systems over the Korean Peninsula.In the assimilation of high-resolution surface data,the National Meteorological Center method tended to exaggerate the length scale that determined the shape and extent to which observed information spreads out.In this study,we used the difference between observation and background data to tune the length scale in the assimilation of high-resolution surface data.The resulting assimilation clearly showed that the analysis with the tuned length scale was able to reproduce the small-scale features of the ideal field effectively.We also investigated the effect of a double-iteration method with two different length scales,representing large and small-length scales in the WRF-3DVAR.This method reflected the large and small-scale features of observed information in the model fields.The quantitative accuracy of the precipitation forecast using this double iteration with two different length scales for heavy rainfall was high;results were in good agreement with observations in terms of the maximum rainfall amount and equitable threat scores.The improved forecast in the experiment resulted from the development of well-identified mesoscale convective systems by intensified low-level winds and their consequent convergence near the rainfall area.  相似文献   

3.
The Atmospheric Infrared Sounder(AIRS) provides twice-daily global observations of brightness temperature, which can be used to retrieve the total column ozone with high spatial and temporal resolution.In order to apply the AIRS ozone data to numerical prediction of tropical cyclones, a four-dimensional variational(4DVAR) assimilation scheme on selected model levels is adopted and implemented in the mesoscale non-hydrostatic model MM5. Based on the correlation between total column ozone and potential vorticity(PV), the observation operator of each level is established and five levels with highest correlation coefficients are selected for the 4DVAR assimilation of the AIRS total column ozone observations. The results from the numerical experiments using the proposed assimilation scheme for Hurricane Earl show that the ozone data assimilation affects the PV distributions with more mesoscale information at high levels first and then influences those at middle and low levels through the so-called asymmetric penetration of PV anomalies.With the AIRS ozone data being assimilated, the warm core of Hurricane Earl is intensified, resulting in the improvement of other fields near the hurricane center. The track prediction is improved mainly due to adjustment of the steering flows in the assimilation experiment.  相似文献   

4.
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a fourdimensional Variational Doppler Radar Analysis System(VDRAS).Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational(4DVAR) data assimilation system.A squall-line case observed during a field campaign is selected to investigate the performance of the technique.A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions.The surface-based cold pool,divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation.Three experiments—assimilating radar data only,assimilating radar data with surface data blended in a mesoscale background,and assimilating both radar and surface observations with a 4DVAR cost function—are conducted to examine the impact of the surface data assimilation.Independent surface and wind profiler observations are used for verification.The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations.It is also shown that the additional surface data can help improve the analysis and forecast at low levels.Surface and low-level features of the squall line—including the surface warm inflow,cold pool,gust front,and low-level wind—are much closer to the observations after assimilating the surface data in VDRAS.  相似文献   

5.
The advent of modern geostationary satellite infrared radiance observations has noticeably improved numerical weather forecasts and analyses.However,compared to midlatitude weather systems and tropical cyclones,research into using infrared radiance observations for numerically predicting and analyzing tropical mesoscale convective systems remain mostly fallow.Since tropical mesoscale convective systems play a crucial role in regional and global weather,this deficit should be addressed.This study is the first of its kind to examine the potential impacts of assimilating all-sky upper tropospheric infrared radiance observations on the prediction of a tropical squall line.Even though these all-sky infrared radiance observations are not directly affected by lower-tropospheric winds,the high-frequency assimilation of these all-sky infrared radiance observations improved the analyses of the tropical squall line’s outflow position.Aside from that,the assimilation of all-sky infrared radiance observations improved the analyses and prediction of the squall line’s cloud field.Finally,reducing the frequency of assimilating these all-sky infrared radiance observations weakened these improvements to the analyzed outflow position,as well as the analyses and predictions of cloud fields.  相似文献   

6.
Constructing β-mesoscale weather systems in initial fields remains a challenging problem in a mesoscale numerical weather prediction (NWP) model. Without vertical velocity matching the β-mesoscale weather system, convection activities would be suppressed by downdraft and cooling caused by precipitating hydrometeors. In this study, a method, basing on the three-dimensional variational (3DVAR) assimilation technique, was developed to obtain reasonable structures of β-mesoscale weather systems by assimilating radar data in a next-generation NWP system named GRAPES (the Global and Regional Assimilation and Prediction System) of China. Single-point testing indicated that assimilating radial wind significantly improved the horizontal wind but had little effect on the vertical velocity, while assimilating the retrieved vertical velocity (taking Richardson's equation as the observational operator) can greatly improve the vertical motion. Experiments on a typhoon show that assimilation of the radial wind data can greatly improve the prediction of the typhoon track, and can ameliorate precipitation to some extent. Assimilating the retrieved vertical velocity and rainwater mixing ratio, and adjusting water vapor and cloud water mixing ratio in the initial fields simultaneously, can significantly improve the tropical cyclone rainfall forecast but has little effect on typhoon path. Joint assimilating these three kinds of radar data gets the best results. Taking into account the scale of different weather systems and representation of observational data, data quality control, error setting of background field and observation data are still requiring further in-depth study.  相似文献   

7.
The relationship between the radar reflectivity factor(Z) and the rainfall rate(R) is recalculated based on radar observations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze–Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The Z–R relationship is combined with an empirical qr–R relationship to obtain a new Z–qr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational(3 DVar) data assimilation system of the Weather Research and Forecasting(WRF) model to improve the analysis and prediction of severe convective weather over the Yangtze–Huaihe River basin. The performance of the corrected reflectivity operator used in the WRF 3 DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z–R relationship. Three experiments are conducted with the WRF model and its 3 DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected reflectivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better performance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original reflectivity operator. This suggests that the new statistical Z–R relationship is more suitable for predicting severe convective weather over the Yangtze–Huaihe River basin than the Z–R relationships currently in use.  相似文献   

8.
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.
Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.  相似文献   

9.
On the basis of the joint estimated 1-h precipitation from Changde, Jingzhou, and Yichang Doppler radars as well as Wuhan digital radar, and the retrieved wind fields from Yichang and Jingzhou Doppler radars, a series of numerical experiments with an advanced regionalη-coordinate model (AREM) under different model initial schemes, i.e., Grapes-3DVAR, Barnes objective analysis, and Barnes-3DVAR, are carried out for a torrential rain process occurring along the Yangtze River in the 24-h period from 2000 BT 22 July 2002 to investigate the effects of the Doppler-radar estimated rainfall and retrieved winds on the rainfall forecast. The main results are as follows: (1) The simulations are obviously different under three initial schemes with the same data source (the radiosounding and T213L31 analysis). On the whole, Barnes-3DVAR, which combines the advantages of the Barnes objective analysis and the Grapes-3DVAR method, gives the best simulations: well-simulated rain band and clear mesoscale structures, as well as their location and intensity close to observations. (2) Both Barnes-3DVAR and Grapes-3DVAR schemes are able to assimilate the Doppler-radar estimated rainfall and retrieved winds, but differences in simulation results are very large, with Barnes-3DVAR's simulation much better than Grapes-3DVAR's. (3) Under Grapes-3DVAR scheme, the simulation of 24-h rainfall is improved obviously when assimilating the Doppler-radar estimated precipitation into the model in compared with the control experiment; but it becomes a little worse when assimilating the Doppler-radar retrieved winds into the model, and it becomes worse obviously when assimilating the Doppler-radar estimated precipitation as well as retrieved winds into the model. However, the simulation is different under Barnes-3DVAR scheme. The simulation is improved to a certain degree no matter assimilating the estimated precipitation or retrieved winds, or both of them. The result is the best when assimilating both of them into the model. And (4) Barnes-3DVAR is a new and efficient initial scheme for assimilating the radar estimated rainfall and retrieved winds.  相似文献   

10.
Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Ka...  相似文献   

11.
An extremely heavy rainfall event occurred in Zhengzhou, China, on 20 July 2021 and produced an hourly rainfall rate of 201.9 mm, which broke the station record for mainland China. Based on radar observations and a convection-permitting simulation using the WRF-ARW model, this paper investigates the multiscale processes, especially those at the mesoscale,that support the extreme observed hourly rainfall. Results show that the extreme rainfall occurred in an environment characteristic of warm-sec...  相似文献   

12.
This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike’s track, resulting in better forecasts.  相似文献   

13.
In order to understand the impact of initial conditions upon prediction accuracy of short-term forecast and nowcast of precipitation in South China, four experiments i.e. a control, an assimilation of conventional sounding and surface data, testing with nudging rainwater data and the assimilation of radar-derived radial wind, are respectively conducted to simulate a case of warm-sector heavy rainfall that occurred over South China, by using the GRAPES_MESO model. The results show that (1) assimilating conventional surface and sounding observations helps improve the 24-h rainfall forecast in both the area and order of magnitude; (2) nudging rainwater contributes to a significant improvement of nowcast, and (3) the assimilation of radar-derived radial winds distinctly improves the 24-h rainfall forecast in both the area and order of magnitude. These results serve as significant technical reference for the study on short-term forecast and nowcast of precipitation over South China in the future.  相似文献   

14.
This study investigated the impact of multiple-Doppler radar data and surface data assimilation on forecasts of heavy rainfall over the central Korean Peninsula;the Weather Research and Forecasting(WRF) model and its three-dimensional variational data assimilation system(3DVAR) were used for this purpose. During data assimilation,the WRF 3DVAR cycling mode with incremental analysis updates(IAU) was used. A maximum rainfall of 335.0 mm occurred during a 12-h period from 2100 UTC 11 July 2006 to 0900 UTC 12 July 2006.Doppler radar data showed that the heavy rainfall was due to the back-building formation of mesoscale convective systems(MCSs).New convective cells were continuously formed in the upstream region,which was characterized by a strong southwesterly low-level jet(LLJ).The LLJ also facilitated strong convergence due to horizontal wind shear,which resulted in maintenance of the storms.The assimilation of both multiple-Doppler radar and surface data improved the accuracy of precipitation forecasts and had a more positive impact on quantitative forecasting(QPF) than the assimilation of either radar data or surface data only.The back-building characteristic was successfully forecasted when the multiple-Doppler radar data and surface data were assimilated.In data assimilation experiments,the radar data helped forecast the development of convective storms responsible for heavy rainfall,and the surface data contributed to the occurrence of intensified low-level winds.The surface data played a significant role in enhancing the thermal gradient and modulating the planetary boundary layer of the model,which resulted in favorable conditions for convection.  相似文献   

15.
Although radar observations capture storm structures with high spatiotemporal resolutions, they are limited within the storm region after the precipitation formed. Geostationary satellites data cover the gaps in the radar network prior to the formation of the precipitation for the storms and their environment. The study explores the effects of assimilating the water vapor channel radiances from Himawari-8 data with Weather Research and Forecasting model data assimilation system(WRFDA) for a severe storm case over north China. A fast cloud detection scheme for Advanced Himawari imager(AHI)radiance is enhanced in the framework of the WRFDA system initially in this study. The bias corrections, the cloud detection for the clear-sky AHI radiance, and the observation error modeling for cloudy radiance are conducted before the data assimilation. All AHI radiance observations are fully applied without any quality control for all-sky AHI radiance data assimilation. Results show that the simulated all-sky AHI radiance fits the observations better by using the cloud dependent observation error model, further improving the cloud heights. The all-sky AHI radiance assimilation adjusts all types of hydrometeor variables, especially cloud water and precipitation snow. It is proven that assimilating all-sky AHI data improves hydrometeor specifications when verified against the radar reflectivity. Consequently, the assimilation of AHI observations under the all-sky condition has an overall improved impact on both the precipitation locations and intensity compared to the experiment with only conventional and AHI clear-sky radiance data.  相似文献   

16.
In this paper, based on heavy rain numerical forecast model AREM (Advanced Regional Eta Model), two different initialization schemes, LAPS and GRAPES-3DVAR, are used to run assimilation experiments of AREM-LAPS and AREM-3DVAR with the same data source (NCEP forecast field, surface data and radio-soundings) during the period from 21 May to 30 July 2008 to investigate the effect of the two initialization schemes on the rainfall simulation. The result suggests that: (1) the forecast TS score by the AREM-LAPS is higher than that by the AREM-3DVAR for rainfall in different areas, at different valid time and with different intensity, especially for the heavy rain, rainstorm and extremely heavy rain; (2) the AREM-3DVAR can generally simulate the average rainfall distribution, but the forecast area is smaller and rainfall intensity is weaker than the observation, while the AREM-LAPS significantly improves the forecast; (3) the AREM-LAPS gives a better forecast for the south-north shift of rainfall bands and the rainfall intensity variation than the AREM-3DVAR; (4) the AREM-LAPS can give a better reproduction for the daily change in the mean-rainfall-rate of the main rain band, and rainfall intensity changes in the eastern part of Southwest China, the coastal area in South China, the middle-lower valleys of Yangtze river, the Valleys of Huaihe river, and Shandong peninsula, with the rainfall intensity roughly close to the observation, while the rainfall intensity simulated by the AREM-3DVAR is clearly weaker than the observation, especially in the eastern part of Southwest China; and (5) the comparison verification between the AREM-LAPS and AREM-3DVAR for more than 10 typical rainfall processes in the summer of 2008 indicates that the AREM-LAPS gives a much better forecast than AREM-3DVAR in rain-band area, rainfall location and intensity, and in particular, the rainfall intensity forecast is improved obviously.  相似文献   

17.
With available high-resolution ocean surface wind vectors retrieved from the U.S. Naval Research Laboratorys WindSat on Coriolis, the impact of these data on genesis and forecasting of tropical storm Henri is examined using the non-hydrostatic, fifth-generation mesoscale model (MM5) of Pennsylvania State University-National Center for Atmospheric Research plus its newly released three-dimensional variational data assimilation (3DVAR) system. It is shown that the assimilation of the WindSat-retrieved ocean surface wind vectors in the 3DVAR system improves the model initialization fields by introducing a stronger vortex in the lower troposphere. As a result, the model reproduces the storm formation and track reasonably close to the observations. Compared to the experiment without the WindSat surface winds, the WindSat assimilation reduced an error between the model simulated track and observations of more than 80 km and also improved the storm intensity by nearly 2 hPa. It suggests that these data could provide early detection and prediction of tropical storms or hurricanes.  相似文献   

18.
In an effort to assess the impact of the individual component of meteorological observations (ground-based GPS precipitable water vapor,automatic and conventional meteorological observations) on the torrential rain event in 4-5 July 2000 in Beijing (with the 24-h accumulated precipitation reaching 240 mm),24-h observation system experiments are conducted numerically by using the MM5/WRF 3DVAR system and the nonhydrostatic MM5 model.Results indicate that,because the non-conventional GPS observations are directly assimilated into the initial analyses by 3DVAR system,better initial fields and 24-h simulation for the severe precipitation event are achieved than those under the MM5/Litter_R objective analysis scheme. Further analysis also shows that the individual component of meteorological observation network plays their special positive role in the improvement of initial field analysis and forecasting skills.3DVAR scheme with or without radiosonde and pilot observation has the most significant influence on numerical simulation,and automatic and conventional surface meteorological observations rank second.After acquiring the supplement information from the other meteorological observations,the ground-based GPS precipitable water vapor data can more obviously reflect initial field assimilation and precipitation forecast.By incorporating the ground- based GPS precipitable water vapor data into the 3DVAR analyses at the initial time,the threat scores (TS) with thresholds of 1,5,10,and 20 mm are increased by 1%-8% for 6- and 24-h accumulated precipitation observations,respectively.This work gives one helpful example that assesses the impact of individual component of the existing meteorological observation network on the high influence weather event using 3DVAR numerical system.  相似文献   

19.
In this paper, a sudden heavy rainfall event is analyzed, which occurred over the Yellow River midstream during 5–6 August 2014. We used observational, NCEP/NCAR reanalysis, high-resolution satellite, and numerical simulation data. The main results are as follows. Under an unfavorable environmental circulation, inadequate water vapor and unfavorable dynamic conditions but sufficient energy, a local sudden heavy rainfall was caused by the release of strong unstable energy that was triggered by cold air transport into middle and lower layers and the propagation of gravity waves. The distributions of rain area, rain clusters, and 10-minute rainfall showed typical mesoscale and microscale fluctuation characteristics. In the mesoscale rain area or upstream, there was a quasi-stationary wave of mesoscale gravity waves with their propagation downstream. In the course of propagation from southwest to northeast, the wavelength became longer and the amplitude attenuated. In the various phases of gravity wave development, there were evident differences in the direction of the wave front. Wave energy was mainly in the lower layers. Unstable vertical wind shear at heights of 1–6 km provided fluctuation energy for the gravity waves. The mechanisms of heavy rainfall formation were different at Linyou and Hancheng stations. Diabatic heating was the main source of disturbed effective potential energy at Linyou. The explosive short-period strong precipitation was caused by the release of strong effective potential energy triggered by the gravity waves, and its development and propagation after that energy maximized. In contrast, the latent heat release of upstream precipitation was the main source of disturbed effective potential energy at Hancheng. This formed a positive feedback mechanism that produced continuous precipitation. In the studied event, the development of westerly belt systems had disturbed the wind field. The contribution of kinetic energy generated by this disturbance could not be ignored. The Froude number, mountain shape parameter, and ratio between mountain height and temperature inversion layer thickness had various effects of atmosphere and terrain on mesoscale and microscale mountain waves. In upper and lower layers, there were five airflows that were strengthened by the terrain. All these had important influences on local heavy rainfall at Linyou and Hancheng stations.  相似文献   

20.
The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号