首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
地球物理   5篇
天文学   1篇
  2020年   1篇
  2018年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 180 毫秒
1
1.
利用TC1、Cluster和Polar结合极光和同步高度及地磁的观测,研究了2004年9月14日1730~1930 UT时间段的亚暴偶极化过程.此前行星际磁场持续南向几个小时.亚暴初发(Onset)开始于1823 UT.2 min之后,同步高度的LANL 02A在子夜附近观测到了明显的能量电子增强(Injection)事件,而TC1在1827UT左右在磁尾(-10,-2, 0)RE (GSE)观测到了磁场BX的突然下降,伴随着等离子体压强和温度的突然增加及磁场的强烈扰动.在(-16, 1, 3)RE (GSE) 的Cluster上相同的仪器观测到相同的现象,只是比TC1观测到的晚大约23 min,在1850 UT左右.虽然Polar在更靠近地球的较高纬度(-75, 35, -40)RE (GSE)附近,也在1855 UT左右观测到了这种磁场偶极化现象.以上的观测时序表明TC1、Cluster观测到的磁场偶极化比亚暴偶极化初始发生分别晚4 min和27 min.说明偶极化由近磁尾向中磁尾传播.详细计算表明偶极化源区的位置大约在X=-77RE~-86RE,而传播速度大约为70 km·s-1.在这个事件中亚暴的物理图像可能是中磁尾的近地重联产生的地向高速流到达近磁尾,为近磁尾的亚暴触发创造了条件;亚暴在近磁尾触发之后,磁场偶极化峰面向中磁尾传播.  相似文献   
2.
通量堆积和偶极化过程中的超低频波动   总被引:1,自引:0,他引:1       下载免费PDF全文
2004年9月17日TC-1卫星在近地磁尾夜侧观测到一次伴随有通量堆积和偶极化过程的典型亚暴事件.本文利用离散小波分析和FFT分析方法对本次事件中4 s精度的FGM和HIA数据进行分析,以了解通量堆积过程和偶极化过程中的低频波特性.分析结果表明,通量堆积过程和偶极化过程中场和粒子有明显的不规则低频波动,主要波动频率范围为4~15 mHz,和Pi-2脉动一致.通量堆积过程中磁场各个分量的低频波动和偶极化过程中的低频波动有明显不同,表明这两个物理过程可能存在不同的波动机制.在通量堆积过程和偶极化过程中,平行磁场方向上温度和速度的波动和垂直方向上温度和速度的波动有明显区别,平行磁场方向上温度和速度的波动有较好的相关性,且热离子密度的波动和平行磁场方向上的波动有较好的相关性,表明存在快模压缩波.TC-1卫星的观测显示通量堆积过程中磁场By分量有明显增长.我们的分析结果表明ULF波与By分量的增长有密切关系,从而可能对亚暴膨胀相的触发有重要影响.  相似文献   
3.
本文利用考虑了Hall效应和有限Larmor半径(FLR)效应的磁流体数值模拟研究了在离子惯性长度/离子Larmor半径尺度内偶极化锋面的动力学特性.偶极化锋面由磁尾近地区域中由于热压尾向梯度和磁场曲率力不平衡所引起的交换不稳定性自洽产生.数值研究表明,偶极化锋面是切向间断,在相对该锋面结构静止的参考系中等离子体穿过偶极化锋面的法向速度为零.Hall效应主要影响与偶极化锋面的切平面相正交的电场,使得锋面切向电流增大,同时产生锋面结构不对称.研究表明离子在Larmor半径尺度产生的FLR效应可导致锋面结构的大尺度漂移运动.由FLR效应产生的离子磁化流速在偶极化锋面的日下点处指向昏向,锋面后区域的速度晨向分量增长,从而导致整个锋面结构向晨向漂移.  相似文献   
4.
磁层亚暴的发生与近磁尾(约6~8 RE)电流片中断和中磁尾(约20~30 RE)磁场重联密切相关,而极光的极向扩展、电流片中断和磁尾重联的时序过程对于认识亚暴的触发机制至关重要. 本文利用位于中磁尾的CLUSTER卫星,同步轨道附近LANL-01、LANL-97卫星,近磁尾POLAR和 极区IMAGE卫星的观测,分析了单个亚暴事例.结果表明,在此事件中,中磁尾磁场重联起始比近尾电流片中断早3 min发生,电流片中断发生4 min后,IMAGE卫星观测到极光增亮,同时AE指数突然增大,亚暴膨胀相起始. 观测结果与亚暴中性线模型较为吻合.  相似文献   
5.
The Galileo spacecraft explored Jupiter’s magnetotail in a low-inclination orbit, where it detected the signatures of tail reconnection. In this paper, we examine and classify the tail reconnection signatures into four types: dipolarizations, strong northward Bθ excursions, tailward-moving plasmoids and planetward-moving plasmoids. The distribution of these four types of events is used to infer the most probable location of the Jovian tail reconnection site to be near 0200 LT at a planetocentric distance of 80 Jovian radii. Dipolarizations are mainly observed planetward of this point, and strong northward Bθ excursions and plasmoids are found mostly tailward. The observations also suggest that the Jovian tail reconnection starts at a point (neutral point), a localized region in the tail, instead of along an extended azimuthal line (X-line). Using the updated Khurana’s Jupiter’s magnetospheric model, which includes the external field and the effects of the swept-back configuration of tail field lines, we map the signatures of Jovian tail reconnection into the Jupiter’s ionosphere. We confirm that the dawn auroral storms or the polar dawn spots observed by the Hubble Space Telescope (HST) are located close to the extrapolated footpoints of tail dipolarizations and could be the auroral signatures of tail reconnection.  相似文献   
6.
In this paper, the particle acceleration processes around magnetotail dipolarization fronts(DFs) were reviewed. We summarize the spacecraft observations(including Cluster, THEMIS, MMS) and numerical simulations(including MHD, testparticle, hybrid, LSK, PIC) of these processes. Specifically, we(1) introduce the properties of DFs at MHD scale, ion scale, and electron scale,(2) review the properties of suprathermal electrons with particular focus on the pitch-angle distributions,(3)define the particle-acceleration process and distinguish it from the particle-heating process,(4) identify the particle-acceleration process from spacecraft measurements of energy fluxes, and(5) quantify the acceleration efficiency and compare it with other processes in the magnetosphere(e.g., magnetic reconnection and radiation-belt acceleration processes). We focus on both the acceleration of electrons and ions(including light ions and heavy ions). Regarding electron acceleration, we introduce Fermi,betatron, and non-adiabatic acceleration mechanisms;regarding ion acceleration, we present Fermi, betatron, reflection, resonance, and non-adiabatic acceleration mechanisms. We also discuss the unsolved problems and open questions relevant to this topic, and suggest directions for future studies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号