首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   36篇
  国内免费   43篇
测绘学   5篇
大气科学   21篇
地球物理   102篇
地质学   168篇
海洋学   53篇
天文学   5篇
综合类   6篇
自然地理   32篇
  2023年   3篇
  2022年   9篇
  2021年   9篇
  2020年   9篇
  2019年   10篇
  2018年   4篇
  2017年   16篇
  2016年   10篇
  2015年   4篇
  2014年   17篇
  2013年   17篇
  2012年   8篇
  2011年   18篇
  2010年   14篇
  2009年   19篇
  2008年   26篇
  2007年   26篇
  2006年   13篇
  2005年   24篇
  2004年   13篇
  2003年   25篇
  2002年   15篇
  2001年   11篇
  2000年   15篇
  1999年   6篇
  1998年   10篇
  1997年   10篇
  1996年   8篇
  1995年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有392条查询结果,搜索用时 31 毫秒
1.
Analyses (n = 525) of chloride (Cl), bromide (Br), nitrate as nitrogen (NO3-N), sodium (Na+), calcium (Ca2+) and potassium (K+) in stream water, tile-drain water and groundwater were conducted in an urban-agricultural watershed (10% urban/impervious, 87% agriculture) to explore potential differences in the signature of Cl originating from an urban source as compared with an agricultural source. Only during winter recharge events did measured Cl concentrations exceed the 230 mg/L chronic threshold. At base flow, nearly all surface water and tile water samples had Cl concentrations above the calculated background threshold of 18 mg/L. Mann–Whitney U tests revealed ratios of Cl to Br (p = .045), to NO3-N (p < .0001), to Ca2+ (p < .0001), and to Na+ (p < .0001) to be significantly different between urban and agricultural waters. While Cl ratios indicate that road salt was the dominant source of Cl in the watershed, potassium chloride fertilizer contributed as an important secondary source. Deicing in watersheds where urban land use is minimal had a profound impact on Cl dynamics; however, agricultural practices contributed Cl year-round, elevating stream base flow Cl concentrations above the background level.  相似文献   
2.
While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the "Redfield ratio", and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.  相似文献   
3.
The role of sea surface temperature (SST) forcing in the development and predictability of tropical cyclone (TC) intensity is examined using a large set of idealized numerical experiments in the Weather Research and Forecasting (WRF) model. The results indicate that the onset time of rapid intensification of TC gradually decreases, and the peak intensity of TC gradually increases, with the increased magnitude of SST. The predictability limits of the maximum 10 m wind speed (MWS) and minimum sea level pressure (MSLP) are ~72 and ~84 hours, respectively. Comparisons of the analyses of variance for different simulation time confirm that the MWS and MSLP have strong signal-to-noise ratios (SNR) from 0-72 hours and a marked decrease beyond 72 hours. For the horizontal and vertical structures of wind speed, noticeable decreases in the magnitude of SNR can be seen as the simulation time increases, similar to that of the SLP or perturbation pressure. These results indicate that the SST as an external forcing signal plays an important role in TC intensity for up to 72 hours, and it is significantly weakened if the simulation time exceeds the predictability limits of TC intensity.  相似文献   
4.
The biogeochemistry of organic matter in a macrotidal estuary, the Loire, France, has been studied for two years during different seasons. Both particulate matter and sediment have been sampled in the riverine zone, in the maximum turbidity zone and in the ocean near the river mouth. Two techniques have been used: carbon isotopic ratio determination and analysis of lipid-marker signatures in the n-alkane, n-alkene and fatty acid series. For the period corresponding to the output of the maximum turbidity zone in the ocean, the complete change of organic matter, continental in nature in the inner estuary, pure marine in the outer estuary is well illustrated by the decrease of δ13C values and of carbon preference index of n-alkanes. Input sources of organic matter by continental plants, plankton and micro-organisms are discussed from biogeochemical-marker analyses data along with the processes of accumulation of particles and their evolution with the season. Some criteria for evidencing the nature of various organic-matter pools are assessed and compared in different chemical-marker series as follows: high molecular weight n-alkanes and fatty acids, perylene for continental imprints, polyunsaturated 18-, 20- and 22-carbon fatty acids, n-C17, n-alkenes and squalene for algae imprints, branched iso and anteiso fatty acids, Δ11-C18:1 for microbial imprints.  相似文献   
5.
Microfossil analysis (e.g. diatoms, foraminifera and pollen) represents the cornerstone of Holocene relative sea-level (RSL) reconstruction because their distribution in the contemporary inter-tidal zone is principally controlled by ground elevation within the tidal frame. A combination of poor microfossil preservation and a limited range in the sediment record may severely restrict the accuracy of resulting RSL reconstructions. Organic δ13C and C/N analysis of inter-tidal sediments have shown some potential as coastal palaeoenvironmental proxies. Here we assess their viability for reconstructing RSL change by examining patterns of organic δ13C and C/N values in a modern estuarine environment. δ13C and C/N analysis of bulk organic inter-tidal sediments and vegetation, as well as suspended and bedload organic sediments of the Mersey Estuary, U.K., demonstrate that the two main sources of organic carbon to surface saltmarsh sediments (terrestrial vegetation and tidal-derived particulate organic matter) have distinctive δ13C and C/N signatures. The resulting relationship between ground elevation within the tidal frame and surface sediment δ13C and C/N is unaffected by decompositional changes. The potential of this technique for RSL reconstruction is demonstrated by the analysis of part of an early Holocene sediment core from the Mersey Estuary. Organic δ13C and C/N analysis is less time consuming than microfossil analysis and is likely to provide continuous records of RSL change.  相似文献   
6.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   
7.
Stable carbon isotope ratios have been used to study the sources of particulate organic carbon (POC) and total dissolved inorganic carbon in the Orinoco Basin. The isotopic composition of total dissolved inorganic carbon shows a range of from -8·1 to -23·0 ppt, an indication of dominance of biological processes. The isotopic composition of POC exhibits a range of from -24·1 to -34·6 ppt with little seasonal variation. The isotopic evidence indicates that the POC is predominantly of terrestrial origin rather than a result of in situ planktonic production. The similarity of isotopic composition of POC and coastal sediments suggests that riverine organic detritus has been transported 30-50 km offshore in a direction parallel to the Orinoco river channel.  相似文献   
8.
The dynamics of benthic primary production and community respiration in a shallow oligotrophic, marine lagoon (Fællestrand, Denmark) was followed for 1·5 years. The shape of the annual primary production cycle was explained primarily by seasonal changes in temperature (r2 = 0·67-0·72) and daylength (r2 = 0·63), whereas temperature almost explained all variation in benthic community respiration (r2 = 0·83-0·87). On a daily basis the benthic system was autotrophic during spring and summer supplied by 'new' and 'regenerated' nitrogen and predominantly heterotrophic during fall and winter caused by light and nutrient limitation. The linear depth-relationship between porewater alkalinity and ammonium indicated that the C:N ratio of mineralized organic matter is low in spring and summer (3-6) and high in fall and winter (9-16). This is inversely related to net primary production and thus the input of labile, nitrogen-rich algal cells. Accordingly, mineralization occurred predominantly in the upper 2-5 cm of the sediment. The pool of reactive material (microalgal cells) was estimated to account for 12% of total organic carbon in the upper 3 cm, and had an average turnover time of less than 1 month in summer. Assimilation of organic carbon by benthic animals was equivalent to about 30% of the annual gross primary production. Grazing reduced chlorophyll a concentration in the sediment during summer and spring to values 30-40% lower than in winter, but maintained a 3-4 times higher specific microalgal productivity. The rapid turnover of organic carbon and nitrogen, and important role of benthic microalgae showed that the benthic community in this oligotrophic lagoon is of a very dynamic nature.  相似文献   
9.
垫江凹陷位于四川盆地东部,是四川盆地三叠纪时期重要的成盐凹陷之一,但当时古卤水是否达到钾盐沉积阶段,是否具备形成海相钾盐的良好条件,一直存在争议。本文通过对垫江凹陷长平3井、高探1井和ZK001井嘉陵江组岩盐样品进行化学成分分析,以及对长平3井典型岩盐样品进行氯同位素分析来判断古卤水沉积阶段和成钾条件。结果发现垫江凹陷三叠系嘉陵江组岩盐δ37 Cl值均为负值,均小于-0.32‰,最低达到-1.18‰,绝大部分岩盐样品溴氯系数大于0.31,有很大一部分样品溴氯系数超过0.45,进一步表明垫江凹陷在嘉陵江期古卤水浓缩已达到钾石盐析出阶段,与岩盐包裹体成分分析结果一致。综合气候-物源-构造因素,认为垫江凹陷三叠纪嘉陵江期气候条件炎热,物质来源丰富,存在次级凹陷,古构造条件优越,具备良好的成钾潜力。  相似文献   
10.
马源  殷建军  袁道先 《地质论评》2022,68(5):1897-1911
滴水/石笋元素是除δ18O和δ13C,研究气候环境变化的又一重要代用指标。外界气候环境变化通过改变表层岩溶带和岩溶含水层中的水文环境,甚至洞穴环境,进而影响元素的溶解、运移和沉淀过程,从而使得滴水/石笋中元素表现一定的变化规律。本文通过分析影响洞穴滴水元素及元素比值变化的因素:元素来源、水—岩相互作用和滞留时间、差异性淋滤、先期碳酸盐沉淀及分配系数的基础上,从元素对岩溶区“二元结构”和极端天气/气候事件响应的角度,探讨了滴水/石笋中元素的气候环境指示意义。取得了以下认识:① 强降水带来的冲刷作用和溶解作用,促进土壤和基岩中元素、胶体和天然有机质(NOM:Natural Organic Matter)等物质在短时间内快速溶解和运移,使滴水中元素含量增加;但随着降水增多带来的稀释作用,使得滴水/石笋中Mg,Sr和Ba等元素含量降低,因此,单一元素的解译较为复杂;② 基岩/溶液中元素溶解和沉积的差异,导致元素相对含量的变化,使得元素X/Ca值对外界环境的响应具有一致性,尤其是Mg/Ca和Sr/Ca值:在干旱条件下,降水减少导致方解石先期沉积(PCP:Prior Calcite precipitation)作用增强,使Mg/Ca和Sr/Ca值增大。但目前存在着一些问题:① Mg/Ca和Sr/Ca值变化对强降水事件的响应并不明显,可能与新、老水混合及元素溶解过程中的溶解比例差别不大有关;② 多源、多期混合水源会导致洞穴滴水元素对极端事件响应减弱;③ Mg/Ca和Sr/Ca的变化为解释δ18O的“雨量效应”及“源效应”提供了见解,但元素变化能否反映季风强度的变化,仍有待进一步的研究。基于以上认识,笔者提出开展更加系统的大气—土壤—包气带—洞穴的监测;开展更高分辨率、更长时间尺度的洞穴监测;开展多区域、多洞穴系统对比研究来更加深入地开展洞穴石笋元素研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号