首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   

2.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
High resolution swath bathymetry data reveal a previously glaciated submarine terrain 20 km offshore Anglesey, north Wales, UK. The detailed documentation of remarkably well-preserved subglacial and ice-marginal bedforms provides evidence for a grounded part of the Irish Sea Ice Stream in a phase of deglaciation. The observed ribbed moraines, drumlins, flutes and eskers indicate a converging ice flow to the west, which then turns south into the deeper central Irish Sea Basin. Using the relative position of the bedforms, their spatial distribution and the morphological resemblance with bedforms described in the literature, this subglacial terrain is interpreted as representing a transition zone of frozen to thawed bed conditions during deglaciation, with an eastwards migrating thawing front that partly altered the edge of the surveyed ribbed moraine field by drumlinization. The abundant De Geer moraines and iceberg scour marks superimposed on drumlins and flutes reveal that the final retreat of the grounded ice margin in the surveyed area terminated into a water-mass with extensive iceberg calving. As the glacial terrain is well preserved, no significant burial has taken place, either by glacially or terrestrially derived sediment. The strong tidal currents at present keep the submarine terrain swept clean of contemporary sediment cover.  相似文献   

4.
Glacial geomorphology relating to the Loch Lomond Stadial (Younger Dryas) in Britain is used to construct five glacial landsystem models. These landsystems lie on a continuum of increasing ice thickness and decreasing topographic control and typify the principal styles of glaciation during the stadial. The landsystems comprise: the cirque/niche glacier landsystem, the alpine icefield landsystem, the lowland piedmont lobe landsystem, the plateau icefield landsystem and the icecap landsystem. Geomorphological features representing the icecap landsystem are present only at the centre of the West Highland Glacier Complex, which was flanked primarily by satellite alpine and plateau icefields. The cirque/niche glacier landsystem was present predominantly in areas that experienced conditions only marginally favourable for glacier development at peripheral sites. Three styles of glacier retreat are recorded by the geomorphology: active, two‐phase and uninterrupted retreat. Of these, active retreat appears to be most widespread within the Loch Lomond Stadial limits. These retreat styles reflect a combination of climatic and topographic conditions, coupled with local factors influencing the preservation of landforms from which retreat dynamics can be inferred. Likewise, the distribution of landsystems was influenced by an interplay between topography and climate, with glacier formation being facilitated in locations where topographical conditions aided in the accumulation of snow. The pattern also supports the existence of previously recognized northward and eastward precipitation gradients across Britain during the stadial.  相似文献   

5.
De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine‐dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding‐line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal‐infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity‐flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding‐line retreat (ca. 400 m yr?1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build‐up. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A detailed high‐resolution seismic stratigraphy, calibrated by core data and terrestrial geomorphological mapping, has been constructed for Loch Ainort, Isle of Skye. This study has provided a palaeoenvironmental history of the area as well as important corroborative evidence for the stepped deglaciation of the Loch Lomond Stadial ice‐field on Skye. The Ainort Glacier reworked pre‐Loch Lomond glacial deposits terminating in a grounded tidewater ice‐front potentially 800 m beyond the previously extrapolated limit. The first stage of deglaciation was characterised by the formation of De Geer moraines indicative of a period of interrupted retreat. The second phase, by contrast, produced hummocky relief with sporadic linear moraines suggesting periods of uninterrupted retreat with occasional stillstands/readvances. Paraglacial reworking of terrestrial slopes resulted in the deposition of thick, subaqueous, debris flows which graded into fluvioglacial dominated sediments and ultimately modern fjordic deposits. The identification of an initial period of active retreat punctuated by numerous readvances correlates directly with the terrestrial record. However, the offshore stratigraphy suggests that although the second phase was dominated by uninterrupted retreat, occasional stillstands/ readvances did occur. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Seismic profiles across the southwest end of Jeffreys Ledge, a bathymetric high north of Cape Ann, Massachusetts, reveal two end moraines. The moraines overlie upper Wisconsinan glacialmarine silty clay and are composed mostly of subaqueous ice-contact deposits and outwash. They were formed below sea level in water depths of as much as 120 m during fluctuations of a calving ice front. The moraines are late Wisconsinan in age and were formed after the Cambridge readvance, about 14,000 yr B.P., and before the Kennebunk readvance, about 13,000 yr B.P. They represent fluctuations of the ice front during overall retreat of Laurentide ice from the Gulf of Maine and New England.  相似文献   

8.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

9.
For the past half-century, reconstructions of North American ice cover during the Last Glacial Maximum have shown ice-free land distal to the Laurentide Ice Sheet, primarily on Melville and Banks islands in the western Canadian Arctic Archipelago. Both islands reputedly preserve at the surface multiple Laurentide till sheets, together with associated marine and lacustrine deposits, recording as many as three pre-Late Wisconsinan glaciations. The northwest corner of Banks Island was purportedly never glaciated and is trimmed by the oldest and most extensive glaciation (Banks Glaciation) considered to be of Matuyama age (>780 ka BP). Inside the limit of Banks Glaciation, younger till sheets are ascribed to the Thomsen Glaciation (pre-Sangamonian) and the Amundsen Glaciation (Early Wisconsinan Stade). The view that the western Canadian Arctic Archipelago remained largely ice-free during the Late Wisconsinan is reinforced by a recent report of two woolly mammoth fragments collected on Banks and Melville islands, both dated to ~22 ka BP. These dates imply that these islands constitute the northeast extremity of Beringia.A fundamental revision of this model is now warranted based on widespread fieldwork across the adjacent coastlines of Banks and Melville islands, including new dating of glacial and marine landforms and sediments. On Dundas Peninsula, southern Melville Island, AMS 14C dates on ice-transported marine molluscs within the most extensive Laurentide till yield ages of 25–49 ka BP. These dates require that Late Wisconsinan ice advanced northwestward from Visount Melville Sound, excavating fauna spanning Marine Isotope Stage 3. Laurentide ice that crossed Dundas Peninsula (300 m asl) coalesced with Melville Island ice occupying Liddon Gulf. Coalescent Laurentide and Melville ice continued to advance westward through M'Clure Strait depositing granite erratics at ≥235 m asl that require grounded ice in M'Clure Strait, as do streamlined bedforms on the channel floor. Deglaciation is recorded by widespread meltwater channels that show both the initial separation of Laurentide and Melvile ice, and the successive retreat of Laurentide ice southward across Dundas Peninsula into Viscount Melville Sound. Sedimentation from these channels deposited deltas marking deglacial marine limit. Forty dates on shells collected from associated glaciomarine rhythmites record near-synchronous ice retreat from M'Clure Strait and Dundas Peninsula to north-central Victoria Island ~11.5 ka BP. Along the adjacent coast of Banks Island, deglacial shorelines also record the retreat of Laurentide ice both eastward through M'Clure Strait and southward into the island's interior. The elevation and age (~11.5 ka BP) of deglacial marine limit there is fully compatible with the record of ice retreat on Melville Island. The last retreat of ice from Mercy Bay (northern Banks Island), previously assigned to northward retreat into M'Clure Strait during the Early Wisconsinan, is contradicted by geomorphic evidence for southward retreat into the island's interior during the Late Wisconsinan. This revision of the pattern and age of ice retreat across northern Banks Island results in a significant simplification of the previous Quaternary model. Our observations support the amalgamation of multiple till sheets – previously assigned to at least three pre-Late Wisconsinan glaciations – into the Late Wisconsinan. This revision also removes their formally named marine transgressions and proglacial lakes for which evidence is lacking. Erratics were also widely observed armouring meltwater channels originating on the previously proposed never-glaciated landscape. An extensive Late Wisconsinan Laurentide Ice Sheet across the western Canadian Arctic is compatible with similar evidence for extensive Laurentide ice entering the Richardson Mountains (Yukon) farther south and with the Innuitian Ice Sheet to the north. Widespread Late Wisconsinan ice, in a region previously thought to be too arid to sustain it, has important implications for paleoclimate, ice sheet modelling, Arctic Ocean ice and sediment delivery, and clarifying the northeast limit of Beringia.  相似文献   

10.
New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast.  相似文献   

11.
The sediment–landform associations of the northern Taymyr Peninsula in Arctic Siberia tell a tale of ice sheets advancing from the Kara Sea shelf and inundating the peninsula, probably three times during the Weichselian. In each case the ice sheet had a margin frozen to its bed and an interior moving over a deforming bed. The North Taymyr ice‐marginal zone (NTZ) comprises ice‐marginal and supraglacial landsystems dominated by thrust‐block moraines 2–3 km wide and large‐scale deformation of sediments and ice. Large areas are still underlain by remnant glacier ice and a supraglacial landscape with numerous ice‐walled lakes and kames is forming even today. The proglacial landsystem is characterised by subaqueous (e.g. deltas) or terrestrial (e.g. sandar) environments, depending on location/altitude and time of formation. Dating results (OSL, 14C) indicate that the NTZ was initiated ca. 80 kyr BP during the retreat of the Early Weichselian ice sheet and that it records the maximum limit of a Middle Weichselian glaciation (ca. 65 kyr BP). During both these events, proglacial lakes were dammed by the ice sheets. Part of the NTZ was occupied by a thin Late Weichselian ice sheet (20–12 kyr BP), resulting in subaerial proglacial drainage. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A new digital map of glacial geomorphic features and interpreted glacial landsystems was produced for an area covering ~415 000 km2 in the Keewatin Sector of the Laurentide Ice Sheet (LIS) in Nunavut. The map integrates information from previous surficial geology maps and >14 000 field stations, and is significantly improved by the detailed inventory of ~152 000 glacigenic features using high-resolution ArcticDEM data and Landsat 8 imagery. From this, we identify and map coherent patterns of landform development (landsystems) between the Manitoba border and the Arctic coast, many of which are entirely new and others that are significantly modified or updated. In particular, we recognize six separate ice streams, including one probable remnant ice stream, and we delineate numerous palimpsest streamlined landscapes with associated ice-flow trends and relative ages. A continuum of relict terrains with varying basal ice thermal conditions is mapped for the first time in the ice divide migration zone between Baker Lake and Wager Bay. In addition, deglacial cold-based retreat terrains and preserved warm-based landscapes unaffected by younger glacial events have been identified. These new georeferenced, multi-scale data sets and interpreted glacial landsystems provide a comprehensive framework to strengthen reconstructions of the glacial history and dynamics of one of the largest ice domes of the LIS, identify distinct glacial sediment transport paths for applications to mineral exploration, and test numerical modelling of the LIS in support of climate change studies and long-term evolution of modern ice sheets.  相似文献   

13.
In the UK, a combination of outcrop mapping, satellite digital elevation models, high‐resolution marine geophysical data and a range of dating techniques have constrained the maximum limit and overall retreat behaviour of the British and Irish Ice Sheet (BIIS). The changing styles of deglaciation have been most extensively studied in the west and north‐western sectors of the BIIS, primarily using offshore geophysical surveys. The surviving record in the southern, terrestrial sector is fragmentary, permitting only large‐scale (tens of kilometres) and longer timescale (c. 1 ka) reconstructions of ice‐margin movement, with limited information on deglacial processes. Here we present a high‐resolution study of the retreat behaviour for a section of the southern ice‐margin from Windermere in the Lake District, using high‐resolution two‐dimensional multi‐channel seismic data, processed using prestack depth migration. By combining the seismic stratigraphy with landform morphologies, extant cores and seismic velocity measurements, we are able to distinguish between: over‐consolidated till; recessional moraines; De Geer moraines; flowed till/ice‐front fan; supra‐/en‐glacial melt‐out till; and subsequent glaciolacustrine/lacustrine sedimentation. The results reveal a complex and active valley glacier withdrawal from Windermere that changed character between basins and produced two small, localized areas of ice‐stagnation and downwasting. This study indicates that similar active ice‐margin retreats probably took place in other valleys of the Lake District during the Late Devensian deglaciation rather than the previously held view of rapid ice‐stagnation and downwasting. When combined with the regional terrestrial record, this supports a model of early ice loss in terrestrial England compared with other parts of the UK. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine-grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water-lain tills, lodgements tills and subaqueous flow deposits. The fine-grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south.  相似文献   

15.
Evidence for former fast glacier flow (ice streaming) in the southwest Laurentide Ice Sheet is identified on the basis of regional glacial geomorphology and sedimentology, highlighting the depositional processes associated with the margin of a terrestrial terminating ice stream. Preliminary mapping from a digital elevation model of Alberta identifies corridors of smoothed topography and corridor‐parallel streamlined landforms (megaflutes to mega‐lineations) that display high levels of spatial coherency. Ridges that lie transverse to the dominant streamlining patterns are interpreted as: (a) series of minor recessional push moraines; (b) thrust block moraines or composite ridges/hill–hole pairs constructed during readvances/surges; and (c) overridden moraines (cupola hills), apparently of thrust origin. Together these landforms demarcate the beds and margins of former fast ice flow trunks or ice streams that terminated as lobate forms. Localised cross‐cutting and/or misalignment of flow sets indicates temporal separation and the overprinting of ice streams/lobes. The fast‐flow tracks are separated by areas of interlobate or inter‐stream terrain in which moraines have been constructed at the margins of neighbouring (competing) ice streams/outlet glaciers; this inter‐stream terrain was covered by more sluggish, non‐streaming ice during full glacial conditions. Thin tills at the centres of the fast‐flow corridors, in many places unconformably overlying stratified sediments, suggest that widespread till deformation may have been subordinate to basal sliding in driving fast ice flow but the general thickening of tills towards the lobate terminal margins of ice streams/outlet glaciers is consistent with subglacial deformation theory. In this area of relatively low relief we speculate that fast glacier flow or streaming was highly dynamic and transitory, sometimes with fast‐flowing trunks topographically fixed in their onset zones and with the terminus migrating laterally. The occurrence of minor push moraines and flutings and associated landforms, because of their similarity to modern active temperate glacial landsystems, are interpreted as indicative of ice lobe marginal oscillations, possibly in response to seasonal climatic forcing, in locations where meltwater was more effectively drained from the glacier bed. Further north, the occurrence of surging glacier landsystems suggests that persistent fast glacier flow gave way to more transitory surging, possibly in response to the decreasing size of ice reservoir areas in dispersal centres and also locally facilitated by ice‐bed decoupling and drawdown initiated by the development of ice‐dammed lakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In the Omagh Basin, north central Ireland, subglacial diamict ridges lie transverse to southwestward Late Devensian (ca. 23–13 ka) ice flow. These ridges (0.5–2.5 km long, 100–450 m wide, 15–35 m high), are similar morphologically to Rogen moraines, which have not been described previously from the British Isles. The crests of some transverse ridges are streamlined, cross-cut or overprinted by drumlins, whereas other ridges are unmodified and were not affected by later drumlinisation. At Kilskeery, west–east trending eskers overlying unmodified transverse ridges post-date drumlinisation (17–14 14C ka). Esker formation shows that the subglacial thermal regime changed from cold-based, favouring bedform preservation, to warm-based with meltwater flowing through enclosed subglacial channels. Patterns of flow-transverse-ridges and spatial variations in the degree of bedform modification record dynamic changes in regional subglacial environments during the last deglacial cycle. This ice-mass variability cannot be reconciled with current Irish glacial models, which are based on immobile ice centres and ordered stages of ice retreat. In a wider context, these changes in bedform patterns and basal ice regimes have a similar signature to millennial-scale ice-mass oscillations recorded by dated proxy evidence elsewhere in the amphi-North Atlantic. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT The local climatic regime and the mass balance state are important determinants of the dynamics of terrestrial and marine glacier fronts, which in turn determine the sediments and landforms produced at the glacier front. Many modern glaciers undergoing overall retreat in areas of'maritime'climate produce winter push moraines during a late winter readvance, followed by a summer retreat, whilst in more'continental'regions no significant winter readvance occurs and annual push-moraines are absent. The frontal dynamics which lead to these changes are analysed and the form, structure, sequence and field relations of both terrestrial and marine push-moraines are described from Iceland, Spitsbergen and Baffin Island.
Long-term changes in mass balance leading to major glacier advances or readvances also generate large push-moraines. In terrestrial environments push-moraine formation is accompanied by uplift, rejuvenation and down-cutting of outwash systems whose sediments become closely associated with glaciotectonic structures, which permit pre-, syn- and post-tectonic sequences to be identified.
The development of ice marginal fan/moraine complexes is modelled as a function of the relative magnitude of two parameters: the velocity of ice movement and the calving rate. A high ice velocity just exceeded by the calving rate gives closely spaced push-moraines and confluent ice marginal fans. A high velocity far exceeded by the calving rate produces closely spaced moraines but separate ice marginal fans. A low ice velocity in combination with a high calving rate results in well separated and feebly developed push-moraines, while a low ice velocity and a low calving rate produces feeble push-moraines and coalescent fans.  相似文献   

18.
《Quaternary Science Reviews》1999,18(8-9):993-1019
Outcrops bearing stained, striated facets indicative of north–northeastward moving ice, truncated by unstained, striated facets indicative of various younger flows occur in the Caniapiscau area of north–central Quebec. This is the first report of differential staining of striated facets in the region. We propose that the staining occurred in an ice-free interval of probable interglacial age. This early ice flow probably occurred during ice retreat toward the Quebec highlands. Ice flow and glacial transport data from the southern Hudson Bay and James Bay basins indicate that the next major regional ice flow was toward the northwest and resulted from the expansion of an Early Wisconsinan glacier in the Quebec highlands. The northern part of this flow was diverted northwestward through Hudson Bay, and the southern part southwestward across James Bay, following a progressive counterclockwise rotation of flow. A zone of intersection (ZI) of two major glacier bedform systems, often referred to as the horseshoe-shaped Labrador Ice Divide, represents the head of a large northward convergent ice-flow system that extended to Ungava Bay and beyond. The Ungava flow propagated southward and captured the head of the opposing flow from an outflow centre located east of Caniaspiscau reservoir. We propose that this capture event correlates with the Gold Cove Advance in Ungava Bay and on Baffin Island at about 9900 14C yr BP. It is the largest advance of Quebec-Labrador ice yet proposed for the region. This correlation is based on the relative ice-flow chronology, accommodation of glacial lakes Naskaupi and McLean in the deglaciation sequence, the constraints placed on Last Glacial Maximum (LGM) ice configuration by the postglacial uplift pattern and events in the deep-sea record. Therefore, the Ungava ice-flow pattern is not a relict pre-Wisconsinan glacial landscape as recently proposed.  相似文献   

19.
Recognition of positions of glacial lakes along the margin of continental ice sheets is critical in reconstructing ice configuration during deglaciation. Advances in remote sensing technology (e.g. LiDAR) have enabled the generation of accurate digital‐elevation models (DEMs) that reveal unprecedented geomorphic detail. Combined with geographical information systems, these tools have considerably advanced the mapping and correlation of geomorphic features such as relict shorelines. Shorelines of glacial Lake Peace (GLP) developed between the Laurentide and Cordilleran ice sheets in northeastern British Columbia and northwestern Alberta. Shoreline mapping from high resolution DEMs produced more than 55 500 elevation data points from 3231 shorelines, enabling the identification of four major phases of GLP: Phase I (altitude 960–990 m a.s.l.); Phase II (890–915 m a.s.l.); Phase III (810–865 m a.s.l.); and Phase IV (724–733 m a.s.l.). The timing of Phase II of GLP is estimated by two optical ages of <16.0±2.5 and 14.2±0.5 ka BP. Extensive mapping of the shorelines allows for measuring of glacial isostatic adjustment as ice retreated. Shorelines currently dip to the northeast at around 0.4–0.5 m km?1. This slope reflects the asynchronous retreat of the Cordilleran (CIS) and Laurentide (LIS) ice sheets. The relative uplift in the southwest of the study area within the Rocky Mountains and foothills suggests that the Late Wisconsinan (MIS 2) CIS persisted in the foothill after the LIS lost mass and retreated, or that the Late Wisconsinan CIS was very thick and caused deep crustal loading, which resulted in more uplift in the southwest before reaching equilibrium during, or shortly after deglaciation.  相似文献   

20.
Along the northern coasts of Ellesmere Island, at least two glaciations are recognized on the basis of morphostratigraphy. The early Holocene ice limit lay only 5 to 60 km beyond present glaciers due to constraints imposed by aridity and calving. This limited ice advance likely extended beyond any Wisconsinan glacial limit. Marine limits established during, retreat from the last glacial maximum reach 148 m a.s.l. In contrast, earlier, more extensive glaciations inundated the coastlines and are associated with former relative sea levels now reaching 286 m a.s.l. Correlation of these pre-Wisconsinan glaciations is based upon amino acid ratios. However, this approach is severely limited by slow rates of racemization, a lack of in situ samples, and complex thermal histories owing to multiple transgressions. Models favoring extensive regional glaciation of northern Ellesmere Island and Greenland must include a glacioclimatic scenario recognizing the constraint that aridity places on glaciation. We suggest that the large ice volume associated with the oldest recognized glaciation relates to a period of reduced sea-ice cover, possibly >400,000 BP, and may correlate with an interglacial stage of the marine oxygen isotope record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号