首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
黏性泥沙在黄河水下三角洲广泛分布,其在外部载荷作用下易引发泥沙淤积、冲刷、海床流化等问题,对港口、航道、海底管线等工程设施构成巨大威胁。利用黄河水下三角洲埕岛海域所取海底表层沉积物,制备不同固结时间和不同含水率的高浓度黏性泥沙样品。采用R/S流变仪,对所制备高浓度黏性泥沙样品进行全剪切速率下的流变试验,分析黄河水下三角洲高浓度黏性泥沙流变特性及含水率和固结时间对流变特性的影响。结果表明,高浓度黏性泥沙在剪切荷载作用下流化失稳,发生相态转化;屈服应力在固结120 min后增加了35%;含水率50%以上高浓度黏性泥沙在高剪切速率下表现出剪切增稠行为,且随含水率增加剪切增稠行为越明显;Power模型适用于含水率大于50%的高浓度黏性泥沙在高剪切速率下的流变行为。本研究可为海底黏性泥沙运动过程数值模拟与海底重力流等灾害预测提供参考。  相似文献   

2.
波浪爬高是海岸工程中重要的水动力学问题之一,其数值模拟方法通常是通过离散Navier-Stokes方程或Boussinesq方程实现的,其中基于光滑粒子流体动力学方法是近年发展起来的。本文应用该方法模拟相同水深下,不同波高的孤立波在45(°)陡坡上的爬高,模拟结果与理论计算结果及已有物理模型试验结果进行了对比,并模拟出孤立波激散破碎过程及粒子分布和速度场的变化过程。结果表明,对密度近似方程进行重新初始化保持了流场内的质量守恒,同时整个计算域内的压力分布更加规则,说明光滑粒子流体动力学法在波浪爬高计算中的有效性。  相似文献   

3.
探索海床液化对沉积物再悬浮贡献的波浪水槽实验   总被引:3,自引:1,他引:2  
通常认为沉积物的再悬浮主要来源于过剩剪切应力对海床表面的逐层侵蚀。虽然许多研究已经注意到波致海床液化在其中的重要性,然而,至今鲜有成果对其进行可靠的定量评估。本文即尝试通过一系列大型波浪水槽实验,初步对其进行量化评估。实验结果表明:在相对波高 (波高水深比) 为 4/20 和6/20的情况下, 黄河三角洲粉质沉积物的液化分别可以贡献52.5% 和 66.8%的再悬浮沉积物, 液化贡献与相对水深呈现正相关;进一步综合前人研究结果对比分析, 构建了用于定量描述液化贡献与相对水深关系的参数化方程。液化主要通过两种机制影响再悬浮过程:(1) 液化后黏聚力的减弱与渗流托举力,导致沉积物抗侵蚀性衰减 (2) 有部分细颗粒沉积物通过液化海床内部的渗流 “泵送” 输运到海床表面。  相似文献   

4.
The results of qualitative laboratory and numerical experiments on two-dimensional non-linear model are described, aiming at an investigation of the structure of the front of bottom gravity current. Non-coincidence of frontal interfaces in density and velocity fields within the bottom gravity current leading (frontal) part is stated on the base of comparative analysis of numerical and laboratory experiments. This fact is experimentally confirmed by field example of marine water inflow into a brackish lagoon. The density gradient along the stream line is shown to be an additional effective criterion for the localization of the frontal zone.  相似文献   

5.
基于实验室水槽实验,研究了内孤立波在海底山脊地形存在下的破碎过程.实验设置了两层流体的分层环境,定量地控制了上下层水体厚度及密度,使用不同高度的高斯地形模拟实际的海山作用,讨论了不同高度地形作用下内孤立波破碎过程的异同.实验结果表明,内孤立波的破碎过程中由于逆压梯度的存在,在地形处发生边界层分离,产生了底边界层反向射流...  相似文献   

6.
The mixing processes in the Mixed Water Region (MWR) that lead to changes in the properties of North Pacific Intermediate Water (NPIW) have been studied using observational data sets obtained in May–June 1998. Neutral surfaces, the equation of water mass conversion rate on neutral surfaces and the equation of vertical velocity across neutral surfaces have been used to distinguish dominant processes by assuming the horizontal scale to be the streamer scale (under 100 km). The possibility of double diffusive convection is also discussed in relation to the density ratio. These results may be summarized as follows: (1) the difference between the potential density surface and the neutral surface may rise to −0.04 kg/m3 around the source water of NPIW; (2) horizontal diffusion causes strong modifications of the source water of NPIW; (3) the density range within which strong modification of the source water of NPIW occurs becomes dense from the northern part of MWR near the Oyashio Front to the southern part near the Kuroshio Front, and to the eastern part. Our modeling of these processes shows that cabbeling has effects on the density increment of the source water of NPIW in the northern and southern part of MWR. Double diffusive convection has effects on the density increment of the source water of NPIW, mainly in the northern part of MWR. The possible density increment due to cabbeling in these areas is estimated to be 0.01≈0.03 kg/m3. The possible density increment due to double diffusive convection is 0.01≈0.03 kg/m3. The total density increment due to cabbeling and double diffusive convection amounts to 0.06 kg/m3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
This paper deals with the modeling of the propagation of three-dimensional gravitational perturbations of small but finite amplitudes in shallow two-layered water in basins with a gently sloping bottom. A single integral-differential evolution equation is derived that takes into account the long-wave contributions of the inertia of liquid layers and surface tension and the weak nonlinearity of the disturbances, as well as the nonstationary water shear srtess at the bottom. A numerical implementation of the model equation that allows us to adequately describe the processes considered is suggested. The transformations of spatial solitary perturbations in the pycnocline of basins with different bottom topographies are presented.  相似文献   

8.
The paper presents a simple approach to estimate the bottom shear stress in the swash zone by coupling the Non Linear Shallow Water Equations with the momentum integral equation for the bottom boundary layer. The approach allows not only the computation of the frictional dissipation term in the equations but also to have an insight into the flow structure in the water column during a swash event. The numerical results have been compared with a new set of experiments involving a single dam-break generated swash event. Three different grain sizes, ranging from coarse sand to gravel, have been tested in the laboratory.  相似文献   

9.
Along the southern Brazilian coast, Tijucas Bay is known for its unique muddy tidal flats associated with chenier plains. Previous field observations pointed to very high suspended sediment concentrations (SSCs) in the inner parts of the bay, and in the estuary of the Tijucas River, suggesting the presence of fluid mud. In this study, the occurrences of suspended sediments and fluid mud were examined during a larger-scale, high-resolution 2-day field campaign on 1–2 May 2007, encompassing survey lines spanning nearly 80 km, 75 water sampling stations for near-bottom density estimates, and ten sediment sampling stations. Wave refraction modeling provided qualitative wave energy estimates as a function of different incidence directions. The results show that SSC increases toward the inner bay near the water surface, but seaward near the bottom. This suggests that suspended sediment is supplied by the local rivers, in particular the Tijucas. Near-surface SSCs were of the order of 50 mg l−1 close to the shore, but exceeded 100 mg l−1 near the bottom in the deeper parts of the bay. Fluid mud thickness and location given by densimetry and echo-sounding agreed in some places, although being mostly discordant. The best agreement was observed where wave energy was high during the campaign. The discrepancy between the two methods may be an indication for the existence of fluid mud, which is recorded by one method but not the other. Agreement is considered to be an indication of fluidization, whereas disagreement indicates more consolidation. Wave modeling suggests that waves from the ENE and SE are the most effective in supplying energy to the inner bay, which may induce the liquefaction of mud deposits to form fluid mud. Nearshore mud resuspension and weak horizontal currents result in sediment-laden offshore flow, which explains the higher SSCs measured in the deeper parts of the bay, besides providing a mechanism for fine-sediment export to the inner shelf.  相似文献   

10.
《Coastal Engineering》2006,53(2-3):181-190
Two-dimensional depth-averaged Boussinesq-type equations were presented with the consideration of slowly varying bathymetry and effects of bottom viscous boundary layer. These Boussinesq-type equations were written in terms of the horizontal velocity components evaluated at an arbitrary elevation in the water depth and the free surface displacement. The leading order effects of the bottom boundary layer were represented by a convolution integral in the depth-integrated continuity equation. To test the validity of the theory, a set of laboratory experiments was performed to measure the viscous damping and shoaling of a solitary wave propagating in a wave tank. The time histories of the free surface profiles were measured at several locations along the centerline of the flume. To compare these laboratory data with theoretical results, the two-dimensional Boussinesq-type equations were integrated across the wave tank, resulting in a set of one-dimensional equations, while the side-wall boundary layers were properly considered. The agreement between the experimental data and numerical results was very good. The bottom shear stress formula was also given and its impact on the sediment transport rate was discussed.  相似文献   

11.
魏巍 《海岸工程》2006,25(3):33-38
根据南海中沙天然气水合物远景区沉积物样品的分析资料,从物理力学特征各方面对本区海底沉积物进行了综合工程地质特征研究。结果表明,本区海底沉积物类型全部为淤泥,工程地质性质相近,以高含水率、高孔隙比、低密度及高塑性为主要特征,抗剪强度很小,压缩系数均大于0.5。土体沉积环境为水动力强度较弱的深海半深海环境。  相似文献   

12.
P. Qi  Y.J. Hou 《Ocean Engineering》2006,33(16):2195-2208
A vertical 2-D water–mud numerical model is developed for estimating the rate of mud mass transport under wave action. A nonlinear semi-empirical rheology model featured by remarkable hysteresis loops in the relationships of the shear stress versus both the shear strain and the rate of shear strain of mud is applied to this water–mud model. A logarithmic grid in the vertical direction is employed for numerical treatment, which increases the resolution of the flow in the neighborhood of both sides of the interface. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes.  相似文献   

13.
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.  相似文献   

14.
象山港水交换数值研究──Ⅰ.对流-扩散型的水交换模式   总被引:9,自引:2,他引:7  
以溶解态的保守性物质作为湾内水的示踪剂,建立了对流-扩散型的海湾水交换数值模型。数值模型使用参数化的方法把重力环流和潮振荡的垂向剪切作用的水平混合效应包纳在水平二维的示踪剂对流-扩散方程中。在空间网距较小时,模型的稳定性和守恒性均可满足海湾水交换研究的需要。  相似文献   

15.
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus.By employing integral transform and Frobenius methods,the transient and steady solutions for the wave-induced pore water pressure,effective stresses and displacements are analytically derived in detail.Verification is available through the reduction to the simple case of homogeneous seabed.The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.  相似文献   

16.
伶仃洋河口泥沙絮凝特征及影响因素研究   总被引:1,自引:1,他引:0  
田枫  欧素英  杨昊  刘锋 《海洋学报》2017,39(3):55-67
泥沙絮凝对河口细颗粒泥沙运动过程起着极其重要的作用。本文通过LISST-100激光粒度仪等仪器实测伶仃洋河口2013年洪季悬浮泥沙絮凝体现场粒径及水动力、泥沙条件,结合实验室悬沙粒径分析,研究大小潮期间伶仃洋河口泥沙絮凝特征,探讨紊动剪切强度、含沙量、盐度分层及波浪等因素对伶仃洋河口泥沙絮凝的影响。结果表明:伶仃洋河口水体中现场粒径平均值为148.53 μm,大于实验室悬沙分散粒径36.74 μm,河口絮凝现象明显;沉速与有效密度、粒径呈正相关,絮团平均有效密度为153.49 kg/m3,平均沉速达1.13 mm/s;小潮时絮团平均粒径大于大潮,垂向上表底层絮团粒径小、中层大,中底层絮团沉速大于表层。伶仃洋河口水动力、泥沙条件是影响其泥沙絮凝的重要因素,低剪切强度(小于5 s-1)、低含沙量(小于50 mg/L)及高体积浓度有利于细颗粒泥沙之间的相互碰撞,促进絮凝作用;当剪切强度与颗粒间碰撞强度高于絮团所能承受的强度时,絮团易破碎分解成小絮团或更细的泥沙颗粒;伶仃洋河口盐度层化引起的泥沙捕获现象增大中层泥沙体积浓度,有利于中层絮凝体的发育;观测期相对较大的波浪增强水体紊动,增大了水体细颗粒泥沙的碰撞几率,表层絮团粒径随波高峰值的出现而增大。  相似文献   

17.
The flocculation of cohesive sediment in the presence of waves is investigated using high-resolution field observations and a newly-developed flocculation model based on artificial neural networks. Vertical profiles of suspended sediment concentration and turbulent intensity are estimated using measurements of current profile and acoustic backscatter. The vertical distribution of floc size is estimated using an artificial neural network (ANN) that is trained and validated using floc size measurements at one vertical level. Data analysis suggests a linear correlation between suspended sediment concentration and turbulence intensity. Observations and numerical simulations show that floc size is inversely related to sediment concentration, turbulence intensity and water temperature. The numerical results indicate that floc growth is supported by low concentration and low turbulence. In the vertical direction, mean size of flocs decreases toward the bottom, suggesting floc breakage due to increasing turbulence intensity toward the bed. A significant decrease in turbulent shear could occur within the bottom few-cm, related to increased damping of turbulence by sediment induced density stratification. The results of the numerical simulations presented here are consistent with the concept of a cohesive sediment particle undergoing aggregation-fragmentation processes, and suggest that the ANN can be a precise tool to study flocculation processes.  相似文献   

18.
In this note we investigated the effects of a thin visco-elastic mud layer on wave propagation. Within the framework of linear water-wave theory, analytical solutions are obtained for damping rate, dispersion relation between wave frequency and wave number, and velocity components in the water column and mud layer. The wave attenuation rate reaches a maximum value when the mud layer thickness is about the same as the mud boundary layer thickness. Heavier mud has a weaker effect on the wave damping. However, the wave attenuation rate does not always decrease as the elastic shear modulus increases. In the range of small values for elastic shear modulus, the wave attenuation can be amplified quite significantly. The current solutions are compared with experimental data with different wave conditions and mud properties. In general, good agreements are observed.  相似文献   

19.
Numerical solutions for the hydroelastic problems of bodies are studied directly in the time domain using Neumann–Kelvin formulation. In the hydrodynamic part of problem, the exact initial boundary value problem is linearized using the free stream as a basis flow, replaced by the boundary integral equation applying Green theorem over the transient free surface Green function. The resultant boundary integral equation is discretized using quadrilateral elements over which the value of the potential is assumed to be constant and solved using the trapezoidal rule to integrate the memory or convolution part in time. In the structure part of the problem, the finite element method is used to solve the hydroelastic problem. The Mindlin plate as a bending element, which includes transverse shear effect and rotary inertia effect are used. The present numerical results show acceptable agreement with experimental, analytical, and other published numerical results.  相似文献   

20.
The propagation characteristics of fluid mud turbidity currents were investigated experimentally and theoretically. Parameterizations for propagation phase transition times from slumping to self-similar and self-similar to viscous phases are proposed. Predictive capabilities of different mathematical models that fall into three different modeling approaches (force-balance, box, shallow water) were evaluated for fluid mud turbidity current propagation using our experimental observations. For the slumping and self-similar phases, the box and force-balance models showed superior predictive capabilities than the one-layer shallow water models with deep ambient condition. Fluid mud turbidity currents have a non-Newtonian rheology and their transition and propagation characteristics in the viscous phase differ vastly from the Newtonian currents. We derived and presented a viscous force-balance expression for the propagation of a non-Newtonian power-law fluid current. We then experimentally evaluated the predictive capability of this force-balance and the viscous shallow water model by Di Federico et al. (2006). Both models' predictions are observed to be in notably good agreement with the experimental data. The results of this study are expected to be useful for preliminary swift calculations of the fluid mud turbidity current propagation characteristics as well as in deciding whether more detailed calculations at the expense of complexity are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号