首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
内波破碎引起的能量耗散和混合是海洋内部的重要物理过程。通过在二维内波水槽进行实验室实验,分析内波与地形的作用,探究内孤立波与平顶海山地形作用时波要素、能量以及湍耗散率的时空变化。本实验利用重力塌陷法在两层流体中制造第一模态内孤立波,通过粒子图像测速技术(particle image velocimetry, PIV)获得内孤立波与地形作用时的流场结构,定量分析整个作用过程。结果表明,地形会改变波形甚至引起破碎,内波与地形作用时,振幅和能量密度会在内孤立波爬坡时迅速增大,在地形前缘产生强烈能量耗散。入射波的能量与塌陷高度呈二次函数关系,透射波能量随地形升高减小,反射波能量随地形升高增大。地形前缘局地湍耗散率极值时间序列在部分实验中呈双峰结构,对应内孤立波界面处剪切加强引起湍流耗散和波后缘翻转破碎。破碎引起的地形前缘区域平均湍耗散率量级在10~(-5)m~2/s~3,局地湍耗散率极值与入射波振幅呈指数关系,所有实验中局地湍耗散率的最大值接近10~(-3) m~2/s~3量级。  相似文献   

2.
本文通过实验室水槽实验,讨论内孤立波经过凹陷地形的演化过程。实验在两层流体中进行,上下水层的厚度和密度被定量地控制,改变凹陷地形的宽度,并对每种地形分别进行了不同分层结构下具有不同初始振幅的内孤立波对照实验,研究内孤立波与凹陷地形的作用过程。研究发现,本文实验环境下凹型内孤立波实验波形与mKdV(Korteweg-deVries)理论波形更符合;而上凸型内孤立波实验,当非线性参数ε≤0.22时,KdV理论波形与实验波形符合较好,当非线性参数ε≥0.27时.mKdV理论与实验波形符合较好。下凹型内孤立波经凹陷地形过程中波形变化轻微,主波振幅有先减小后增大的趋势,且障碍比越大,变化趋势越明显。本实验结果可作为研究海洋中内孤立波与海底凹陷地形作用情况的参考。  相似文献   

3.
通过模型实验,研究了下沉型内孤立波通过山脊地形演化特征。实验以三角形障碍物模拟海底山脊地形,采用两种密度的分层水,对上层流体和下层流体的高度比、密度等进行了量化处理。实验研究表明:KdV理论波形可较好模拟本次实验内孤立波波形,但随着内孤立波振幅的增大,误差增加;在内孤立波与障碍物微量作用、中度作用和破波作用三种程度的相互作用中,内孤立波过障碍物具有不同的波形变化和主波能量衰减率。  相似文献   

4.
南海北部陆架区内孤立波向岸传播过程研究   总被引:1,自引:0,他引:1  
南海北部是全球海洋中内孤立波最强和最为活跃的海域。然而,内孤立波在传入陆架区后,其形态发生显著变化,其传播演变过程表现出高度的复杂性。本研究综合卫星图像和数值模式手段研究了内孤立波在向岸传播过程中的空间变化特征。可见光卫星图像研究结果显示,南海北部陆架区存在三种形态的内孤立波,分别为第一模态下凹型内孤立波、第一模态上凸型内孤立波和第二模态内孤立波。受水深和层结变化的控制,它们的分布区域显著不同。基于MITgcm的数值模拟研究表明,上凸型内孤立波由第一模态下凹内孤立波经过极性转换过程发展而来,而第二模态内孤立波由第一模态下凹内孤立波与急剧变浅地形相互作用而产生。  相似文献   

5.
何啸  贾村  孟静  刘娟  陈旭  杨小欣 《海洋科学》2023,47(3):1-14
内波是海洋中普遍存在的波动形式。内孤立波是典型的非线性内波,多发于陆架边缘海,如南海等海域,对陆架海域有重要影响。本文针对内孤立波在陆架地形上的传播问题,先基于弱非线性与全非线性数值模型,模拟了不同振幅、地形高度条件下内孤立波的演化的过程,探讨了动力系数对内孤立波演化过程的影响,对比了两模型的模拟结果在内孤立波演化过程、能量分配以及能量耗散的差异,后分析了南海的动力系数分布特征。结果表明,在内孤立波不发生破碎的情况下,弱非线性模型与全非线性模拟结果相近。当发生破碎过程时,弱非线性模型可准确模拟头波,但无法通过强非线性的破碎过程耗散能量,只能以裂变的方式辐射能量。在弱非线性模型中,随地形高度增加,频散系数减小到零,平方非线性系数由负转正,立方非线性系数绝对值增大一个量级,并主导陆架地形上内孤立波的演化过程。通过对比南海夏季与冬季非线性内波动力系数空间分布,发现内孤立波在传播过程由于夏季平方非线性效应、立方非线性效应与频散效应较强的影响,其在夏季更易发生陡化与裂变,波列发生频率高。  相似文献   

6.
内孤立波破碎所致混合的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
黄鹏起  陈旭  孟静  李敏  万伟 《海洋与湖沼》2016,47(3):533-539
为定量分析内孤立波破碎的混合过程,本文在二维内波水槽中进行了两层流体第一模态内孤立波在斜坡上破碎的实验,运用粒子图像测速技术(PIV)测量内孤立波传播、破碎、反射过程的流场,计算涡度、湍动能和湍耗散率。结果表明不同振幅内波在不同角度斜坡上破碎时各个量的分布特征十分相似,各组实验各要素时间序列中均有两个峰值,分别发生于非线性增强和破碎时刻。得到破碎时湍耗散率与内孤立波振幅的关系为:较小振幅内波的湍耗散率与振幅呈2次关系,无因次振幅增大到0.9湍耗散率趋于不变;与斜坡角度的关系为:对于小振幅内波斜坡角度增大,破碎程度降低,耗散率减小;振幅较大时,存在一个角度使破碎程度最大。破碎引起的湍耗散率的量级在10–7到10–4m2/s3之间,比实测海洋中内孤立波传播界面和内潮遇地形破碎的湍耗散大1个量级。  相似文献   

7.
内孤立波具有振幅尺度大、能量集中的特点,其引起流场和密度场的迅速变化可能对海洋工程结构物以及水下潜体造成严重威胁。因此研究不同造波条件下生成的内孤立波运动的流场特征具有重要的学术意义和实际应用价值。采用直接数值模拟方法和给定的初始密度场密度跃迁函数,对重力塌陷激发内孤立波的运动过程进行研究,探讨了不同造波条件下,激发产生的内孤立波波型、涡度、振幅和水平速度等流场特征。结果表明:(1)直接模拟数值方法能够模拟内孤立波传播过程中的密度界面波型反转现象;(2)从定性和定量的角度,证实了不稳定内孤立波传播过程中存在能量的向后传递;(3)对于相同的台阶深度(水闸两侧初始密度界面的高度差),初始涡流保持相同,但是随着上下层水深比的减小,其强度下降显著;(4)台阶深度对初始涡流的垂直结构的影响要大于上下层水深比,且台阶深度对内孤立波的振幅、水平速度的影响显著。  相似文献   

8.
缓坡地形上内孤立波的破碎及能量分析   总被引:3,自引:0,他引:3  
在大型重力式分层流水槽中对内孤立波沿缓坡地形的演化特征进行了实验研究,利用分层染色标识方法和多点组合探头阵列技术对其传播特性做了定性分析和定量测量。实验表明:下凹型内孤立波沿缓坡地形传播过程中的破碎先从波背部发生,继而演化出上凸型内孤立波;内孤立波破碎不仅与入射波波幅相关,而且受到地形坡度的强烈影响;入射波幅参数??0.4是内孤立波不稳定及破碎的实验判据,内孤立波能量损失出现跃升是其发生破碎的重要特征。研究进一步获得了内孤立波沿缓坡地形的三维演化结构、破碎发生条件和能量变化特性,对于复杂海洋环境中非线性内波传播特性认识及其动力学建模具有重要的科学意义。  相似文献   

9.
海洋内波破碎问题的研究   总被引:2,自引:0,他引:2  
从理论、观测、数值实验和实验室实验四个方面对国内外近20年来关于海洋内波破碎问题的研究成果进行了分析总结.数值实验和实验室实验表明:中高频内波破碎时,初始的不稳定是二维的,当最终有横向对流卷团形成时,能量开始大量耗散,这时不稳定发展成为三维的;从初始的二维不稳定到对流卷团的产生这一过程,到底是一个剪切不稳定过程,还是一个对流不稳定过程,或者是对流不稳定和剪切不稳定共同存在的一个过程,取决于海水的层化、地形、背景剪切流和内波的自身性质.现场曾观测到内孤立波破碎时存在的剪切不稳定过程,数值研究模拟出了内孤立波破碎时存在的对流不稳定过程.现有的海洋内波破碎判据主要是关于中高频海洋内波的.理论分析侧重于确定线性或弱非线性内波的破碎机制和破碎条件.  相似文献   

10.
建立了基于OpenFOAM动边界的类fixedValuePointPatchVectorField继承的仿物理造波数值波浪水槽。对孤立波在三种不同潜礁地形上的行进、爬坡以及破碎等典型过程进行数值模拟,模拟结果与Boussinesq模型及物理模型试验所得结果进行了对比分析。结果表明,采用动边界进行仿物理造波更适合处理波高水深比较大的孤立波传播问题,可以较好地模拟孤立波在潜礁上传播引起的波浪破碎、水跃等现象。  相似文献   

11.
1 .IntroductionWhile surface solitary waves arefoundin many physical phenomena (Chouand Shih,1996 ;Chouand Quyang,1999 ;Chouet al .,2003 ; Chenet al .,2004 ; Wang,2004 ;Tsenget al .,2005) ,internal solitary waves (ISWs) have been observed since the beginning of the 20th century.In fact ,some internal waves have alarge enoughamplitudeto cause consequence onthe surface .Hence obser-vation of the oceansurface may helpto detect the activities of internal waves . We require observationsthrough…  相似文献   

12.
Chen-Yuan Chen   《Ocean Engineering》2007,34(14-15):1995-2008
Stratified mixing is observed in a wave flume on an internal solitary wave (ISW) of depression or elevation type propagating over a submarine ridge. The submarine ridges, which comprise the seabed topography, are either semicircular or triangular. Tests are performed in a series of combinations of submarine ridges with different heights and ISW in different amplitudes within a two-layer fluid system. When the thickness of the top layer is less than that of the lower layer (i.e., H1<H2), a depression-type ISW may produce a strong hydraulic jump with downwards motion and continuous eddy diffusion. During diffusion, the leading profile of the ISW transforms a wrapped vortex on the front face of the ridge, and a vortex separation at the apex of the ridge. Meanwhile, an elevation-type ISW causes a vortex in the lee of a submarine ridge, which resembles a surface solitary wave in terms of wave transmission process. The degree of wave-obstacle interaction is determined by energy loss, which is induced by submarine ridge blockage. The experiment results suggest that degree of blocking can be applied to classify various degrees of ISW-obstacle encounter in the stratified two-layer fluid system.  相似文献   

13.
A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary waves are produced by means of gravitational collapse at the layer thickness ratio of 0.2, and the internal periodic waves are produced with rocker-flap wave maker at the layer thickness ratio of 0.93. The wave parameters are obtained through dyeing photography. The vertical cylinders of the same size are arranged in different depths. The horizontal force on each cylinder is measured and the vertical distribution rules are researched. The internal wave heights are changed to study the impact of wave heights on the force. The results show that the horizontal force of concave type internal solitary wave on vertical cylinder in the upper-layer fluid has the same direction as the wave propagating, while it has an opposite direction in the lower-layer. The horizontal force is not evenly distributed in the lower fluid. And the force at different depths increases along with wave height. Internal solitary wave can produce an impact load on the entire pile. The horizontal force of internal periodic waves on the vertical cylinders is periodically changed at the frequency of waves. The direction of the force is opposite in the upper and lower layers, and the value is close. In the upper layer except the depth close to the interface, the force is evenly distributed; but it tends to decrease with the deeper depth in the lower layer. A periodic shear load can be produced on the entire pile by internal periodic waves, and it may cause fatigue damage to structures.  相似文献   

14.
The pycnocline in a closed domain is tilted by external wind forcing and tends to restore to a level posi- tion when the wind falls. An internal seiche oscillation exhibits if the forcing is weak, otherwise internal surge and internal solitary waves emerge, which serve as a link to cascade energy to small-scale processes. A two-dimensional non-hydrostatic code with a turbulence closure model is constructed to extend previous laboratory studies. The model could reproduce all the key phenomena observed in the corresponding labo- ratory experiments. The model results further serve as a comprehensive and reliable data set for an in-depth understanding of the related dynamical process. The comparative analyses indicate that nonlinear term favors the generation of internal surge and subsequent internal solitary waves, and the linear model predicts the general trend reasonably well. The vertical boundary can approximately reflect all the incoming waves, while the slope boundary serves as an area for small-scale internal wave breaking and energy dissipation. The temporal evolutions of domain integrated kinetic and potential energy are also analyzed, and the results indicate that about 20% of the initial available potential energy is lost during the first internal wave breaking process. Some numerical tactics such as grid topology and model initialization are also briefly discussed.  相似文献   

15.
Understanding of sea bottom boundary layer characteristics, especially bottom shear stress acting on the sea bed, is an important step needed in sediment transport modeling for practical application purposes. In the present study, a new generation system for bottom boundary layer under solitary wave is proposed. Applicability of this system is examined by comparing measured and numerical solution velocities. Moreover, transitional behavior from laminar to turbulence was investigated. It is concluded that the critical Reynolds number in the experiments shows good agreement with DNS result of Vittori and Blondeaux (2008) and laboratory data of Sumer et al. (2010), indicating validity of the generation system. Since the present generation system enables continuous measurement to obtain ensemble averaged quantities, it can be effectively utilized for future experimental studies on solitary wave boundary layers, including sediment transport experiments with movable bed.  相似文献   

16.
In this paper, a modified dynamic coherent eddy model (DCEM) of large eddy simulation is applied to study internal solitary waves in a numerical flume. The model was verified by physical experiment and applied to investigate the potential influence factors on internal wave amplitude. In addition, we discussed the energy loss of internal solitary wave as well as hydrodynamics in the propagation. The results of our study show that (1) Step-depth is the most sensitive factor on wave amplitude for the “step-pool” internal wave generation method and the wave amplitudes obey a linear increase with step depth, and the increase rate is about 0.4. (2) Wave energy loss obeys a linear decrease with the propagation distance and its loss rate of large amplitude waves is smaller than that of small amplitude waves. (3) Loss of kinetic energy in wave valley is larger than that near the interface due to relative high fluctuating frequency. (4) Discovered boundary jet-flow can intensify the bottom shear, which might be one of the mechanisms of substance transportation, and the boundary layers of jet flows are easily influenced by the adjacent waves.  相似文献   

17.
The three-dimensional numerical model with σ-coordinate transformation in the vertical direction is applied to the simulation of surface water waves and wave-induced laminar boundary layers. Unlike most of the previous investigations that solved the simplified one-dimensional boundary layer equation of motion and neglected the interaction between boundary layer and outside flow, the present model solves the full Navier–Stokes equations (NSE) in the entire domain from bottom to free surface. A non-uniform mesh system is used in the vertical direction to resolve the thin boundary layer. Linear wave, Stokes wave, cnoidal wave and solitary wave are considered. The numerical results are compared to analytical solutions and available experimental data. The numerical results agree favorably to all of the experimental data. It is found that the analytical solutions are accurate for both linear wave and Stokes wave but inadequate for cnoidal wave or solitary wave. The possible reason is that the existing analytical solutions for cnoidal and solitary waves adopt the first-order approximation for free stream velocity and thus overestimate the near bottom velocity. Besides velocity, the present model also provides accurate results for wave-induced bed shear stress.  相似文献   

18.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号