首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
Wave-tide-surge coupled simulation for typhoon Maemi   总被引:1,自引:0,他引:1  
The main task of this study focuses on studying the effect of wave-current interaction on currents, storm surge and wind wave as well as effects of current induced wave refraction and current on waves by using numerical models which consider the bottom boundary layer and sea surface roughness parameter for shallow and smooth bed area around Korean Peninsula. The coupled system (unstructured-mesh SWAN wave and ADCIRC) run on the same unstructured mesh. This identical and homogeneous mesh allows the physics of wave-circulation interactions to be correctly resolved in both models. The unstructured mesh can be applied to a large domain allowing all energy from deep to shallow waters to be seamlessly followed. There is no nesting or overlapping of structured wave meshes, and no interpolation is required. In response to typhoon Maemi (2003), all model components were validated independently, and shown to provide a faithful representation of the system’s response to this storm. The waves and storm surge were allowed to develop on the continental shelf and interact with the complex nearshore environment. The resulting modeling system can be used extensively for prediction of the typhoon surge. The result show that it is important to incorporate the wave-current interaction effect into coastal area in the wave-tide-surge coupled model. At the same time, it should consider effects of depth-induced wave breaking, wind field, currents and sea surface elevation in prediction of waves. Specially, we found that: (1) wave radiation stress enhanced the current and surge elevation otherwise wave enhanced nonlinear bottom boundary layer decreased that, (2) wind wave was significantly controlled by sea surface roughness thus we cautiously took the experimental expression. The resulting modeling system can be used for hindcasting (prediction) the wave-tide-surge coupled environments at complex coastline, shallow water and fine sediment area like areas around Korean Peninsula.  相似文献   

2.
Studies of the breaking criteria for solitary waves on a slope are presented in this paper. The boundary element method is used to model the processes of shoaling and breaking of solitary waves on various slopes. Empirical formulae that can be used to characterize the breaking of solitary waves are presented. These include the breaking index, the wave height, the water depth, and the maximum particle velocity at the point of breaking. Comparisons with the results of other researches are given.  相似文献   

3.
Based on a set of fully nonlinear Boussinesq equations up to the order of O(μ^2, ε^3μ^2) (where ε is the ratio of wave amplitude to water depth and ,μ is the ratio of water depth to wave length) a numerical wave model is formulated. The model's linear dispersion is acceptably accurate to μ ≌ 1.0, which is confirmed by comparisons between the simulat- ed and measured time series of the regular waves propagating on a submerged bar. The moving shoreline is treated numer- ically by replacing the solid beach with a permeable beach. Run-up of nonbreaking waves is verified against the analytical solution for nonlinear shallow water waves. The inclusion of wave breaking is fulfilled by introducing an eddy term in the momentum equation to serve as the breaking wave force term to dissipate wave energy in the surf zone. The model is applied to cross-shore motions of regular waves including various types of breaking on plane sloping beaches. Comparisons of the model test results comprising spatial distribution of wave height and mean water level with experimental data are presented.  相似文献   

4.
This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the k equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water portide velocity and the wave celerity. The model is verified by Hansen and Svendsen‘s experimental data (1979) in terms of wave height and setup and sctdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave ranup in the swash zone is well simulated by the present model.  相似文献   

5.
The propagation,shoaling and breaking of solitary waves on mild slopes are simulated byboundary element method.In this paper,the criterion of breaking solitary waves on mild slopes is discussed.The criterion is that the ratio of horizontal velocity of water particles on the wave crest to wave celerity equalsone.However,the case that the ratio of horizontal velocity of water particles on the wave crest to wave ce-lerity is below one but the front face of wave profile becomes vertical is also considered as a breaking criteri-on.According to the above criteria,the breaking index for slopes 1:10 to 1:25 is studied.The result is com-pared to other researchers'.The deformation of solitary waves on slopes is discussed and the distribution offluid velocities at breaking is shown.  相似文献   

6.
Effects of mesoscale eddies on the internal solitary wave propagation   总被引:3,自引:1,他引:2  
The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary wave propagation. An ocean eddy is produced by a quasi-geostrophic model in f-plane, and the one-dimensional nonlinear variable-coefficient extended Korteweg-de Vries (eKdV) equation is used to simulate an internal solitary wave passing through the mesoscale eddy field. The results suggest that the mode structures of the linear internal wave are modified due to the presence of the mesoscale eddy field. A cyclonic eddy and an anticyclonic eddy have different influences on the background environment of the internal solitary wave propagation. The existence of a mesoscale eddy field has almost no prominent impact on the propagation of a smallamplitude internal solitary wave only based on the first mode vertical structure, but the mesoscale eddy background field exerts a considerable influence on the solitary wave propagation if considering high-mode vertical structures. Furthermore, whether an internal solitary wave first passes through anticyclonic eddy or cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest the formation of the waves. Apart from topography effect, it is shown that the mesoscale eddy background field is also a considerable factor which influences the internal solitary wave propagation and deformation.  相似文献   

7.
A numerical wave tank is used to investigate the onset and strength of unforced wave breaking, and the waves have three types of initial spectra: constant amplitude spectrum, constant steepness spectrum and Pierson-Moscowitz spectrum. Numerical tests are performed to validate the model results. Then, the onset of wave breaking is discussed with geometric, kinematic, and dynamic breaking criteria. The strength of wave breaking, which is always characterized by the fractional energy loss and breaking strength coefficient, is studied for different spectra. The results show how the energy growth rate is better than the initial wave steepness on estimating the fractional energy losses as well as breaking strength coefficient.  相似文献   

8.
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.  相似文献   

9.
10.
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.  相似文献   

11.
基于实验室水槽实验,研究了内孤立波在海底山脊地形存在下的破碎过程。实验设置了两层流体的分层环境,定量地控制了上下层水体厚度及密度,使用不同高度的高斯地形模拟实际的海山作用,讨论了不同高度地形作用下内孤立波破碎过程的异同。实验结果表明,内孤立波的破碎过程中由于逆压梯度的存在,在地形处发生边界层分离,产生了底边界层反向射流和涡脱落现象,计算了内孤立波破碎过程中产生的底部切应力的分布。本文通过实验模拟了内孤立波再海山作用下的破碎过程,进一步探究了海山对内孤立波破碎的影响和底部切应力的作用,对于研究自然界中海洋内孤立波在海山区域的破碎现象有参考价值。  相似文献   

12.
海洋是多尺度强迫-耗散系统,机械能主要在大尺度输入,在小尺度耗散。在大、中尺度运动的能量向小尺度湍流传递过程中,内波扮演着重要角色。内波的生成和破碎可打破海洋动力平衡,而在陆架区,内波(主要是内孤立波)的浅化演变与耗散则是驱动湍流混合的关键过程。通过长期的理论、观测与数值模拟研究,目前已认识到内波浅化过程中主要发生如下演变:波形调制、极性转变、裂变、破碎与耗散。相较于直接发生破碎,浅化演变过程中的裂变及其引发的剪切不稳定和对流不稳定是内孤立波在陆架区的主要耗散机制,显著调制陆架区的跃层混合。从能量串级的角度讲,内孤立波浅化裂变为动力不稳定的高频内波是潮能串级的重要通道。本文简要回顾南海北部陆架区内波的研究历史,并着重总结内波在陆架区演变与耗散机制的研究进展。  相似文献   

13.
安达曼海是内孤立波生成最多的海域之一,目前对其研究大多基于卫星遥感,缺乏基于现场观测资料的相关研究。本文通过2016年至2017年布放在安达曼海中部的锚系潜标对该海域内孤立波的方向和强度进行研究,结果表明在研究区域内孤立波主要向东北方向传播,最大振幅可达100 m。应用彻体力理论预测了研究海域内孤立波波源的分布,与遥感统计结果基本一致,并且波源位置更精确,可直观地给出不同波源激发内孤立波的能力。本文分别用浅水方程、深水方程和有限深方程对安达曼海中部内孤立波相速度进行模拟,结合卫星遥感分析发现该海域内孤立波的产生符合Lee波机制,在三种方程中有限深方程的模拟效果与潜标观测最相符。  相似文献   

14.
As known fromin situ observations, inhomogeneities of flows and of the atmospheric boundary layer produce variations of the intensity of wind wave breaking. A relevant phenomenological model is suggested here, describingin situ data on the breaking of waves in the presence of internal waves. The response of the wave breaking to the flow's inhomogeneity enhances with the growth of its spatial or temporal scale. For the mesoscale (10–100 km) inhomogeneities, the model is essentially simplified—wave breakings depict the local energy inputs to wind waves. The model allows us to compute currents of various type in the wave breaking intensity field. The results may have practical implications, in terms of remote sensing of the ocean. Translated by Vladimir A. Puchkin.  相似文献   

15.
1 .IntroductionWhile surface solitary waves arefoundin many physical phenomena (Chouand Shih,1996 ;Chouand Quyang,1999 ;Chouet al .,2003 ; Chenet al .,2004 ; Wang,2004 ;Tsenget al .,2005) ,internal solitary waves (ISWs) have been observed since the beginning of the 20th century.In fact ,some internal waves have alarge enoughamplitudeto cause consequence onthe surface .Hence obser-vation of the oceansurface may helpto detect the activities of internal waves . We require observationsthrough…  相似文献   

16.
通过模型实验,研究了下沉型内孤立波通过山脊地形演化特征。实验以三角形障碍物模拟海底山脊地形,采用两种密度的分层水,对上层流体和下层流体的高度比、密度等进行了量化处理。实验研究表明:KdV理论波形可较好模拟本次实验内孤立波波形,但随着内孤立波振幅的增大,误差增加;在内孤立波与障碍物微量作用、中度作用和破波作用三种程度的相互作用中,内孤立波过障碍物具有不同的波形变化和主波能量衰减率。  相似文献   

17.
台风浪的研究对于船舶航行、避风以及港口、海洋和近岸建筑物的安全有着重要的现实意义.本文基于考虑波浪折射、底部损耗及波浪破碎等的波谱模型,在充分考虑风能量输入、白帽耗散、水深诱导以及波-波间的非线性相互作用等物理过程,对袭击广东省和福建省沿海的0601号强台风“珍珠”引起的台风浪过程进行了数值模拟计算,计算结果与云澳海洋...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号