首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘修成  徐杰  游新鹏  谢锋 《海洋工程》2019,37(6):157-163
马尔代夫中马友谊大桥采用钻孔灌注桩基础,主墩基础施工过程中,将35根大直径钢护筒施沉至中等—强胶结礁灰岩地层,作为钻孔平台的临时桩基础。以主墩大直径钢护筒沉桩记录为依据,并结合高应变动力检测方法,对珊瑚礁地质大直径打入桩的承载性能进行研究。研究结果表明:1)以钙质砂为主的覆盖层侧阻力较小; 2)礁灰岩侧阻力随胶结程度的增加而增大; 3)中等—强胶结礁灰岩可以作为打入桩的持力层,端阻力约占总承载力的70%; 4)打入桩的承载力恢复系数较小,仅为1.1。  相似文献   

2.
南沙群岛珊瑚礁岩体结构特征及工程地质分带   总被引:2,自引:0,他引:2  
珊瑚礁是发育于海洋环境之中、由造礁珊瑚和生物历经生物和地质作用形成的地质体,是一种特殊的岩土介质类型。在南沙群岛珊瑚礁体上,水动力作用和沉积类型、地形地貌都具有成带分布的特点,因而岩体结构和工程地质性质亦具有分带性。在珊瑚礁海洋水动力环境分带的基础上.研究了南沙群岛珊瑚礁的剖面结构、内部结构和浅地层结构特征以及工程地质分层和岩性,将珊瑚礁岩体结构划分为4种类型和5个工程地质相带,并对各分带的工程特性及适宜性进行了评价。  相似文献   

3.
The low side friction of piles in coral sand results in the low bearing capacity of foundations. In this paper, expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand. Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete. The horizontal linear expansion is 1.11% and the bearing capacity increased 41% for the pile, when 25% expansion agent is added. Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio. Besides, the area for obvious increase in side friction is below the surface of soil about three times the pile diameter, and the expansion leads to a high side friction sharing of the pile. Therefore, the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand.  相似文献   

4.
利用砂土中扩底抗拔桩的模型试验,研究从开始加载到破坏时扩底抗拔桩地基动态变形全过程的承载特性。试验结果表明:半模试验得到的极限荷载和破坏面均略小于全模试验结果,采用半模试验测量地基变形过程与破坏模式有明显优势,用半模试验代替全模试验是可行的;随着桩顶荷载的增加,扩大头上方的土体由压缩变形逐渐发展为局部的压缩—剪切破坏;扩大头对其上部的桩侧摩阻力有增强作用,对其下部的桩侧摩阻力有削弱作用;扩大头在工作荷载、极限荷载和破坏荷载作用时分担的荷载比例为15%~20%。  相似文献   

5.
自升式钻井平台插桩是地基土在桩靴荷载作用下发生连续的塑性破坏的动态过程,当地基极限承载力等于桩靴荷载时插桩完成。经典土力学极限承载力理论对土体潜在滑动面做了假设,无法有效分析土体内部的破坏过程。本研究应用有限元法(FEM )对插桩过程进行了模拟,得到地基土的破坏机制以及中间荷载下土体的应力、应变情况,通过和各理论公式计算的极限承载力进行对比分析,分析影响地基极限承载力的因素。研究表明,基础宽度与硬土层厚度的比值 B/H越大,下卧软土层越容易发生塑性破坏,极限承载力明显下降,当B/H<0.286时,可以忽略下卧软土层对地基承载力的影响。  相似文献   

6.
Two marine calcareous deposits as crushable soils and a siliceous sand as a noncrushable soil were used in this study to compare their monotonic response. Undrained monotonic triaxial tests were conducted on samples, which were prepared in different relative densities and consolidated under various confining pressures. The location of phase transformation point in undrained response of the sands in different initial conditions was evaluated. The effect of important parameters including relative density, confining pressure, particle shape, and particle breakage on phase transformation point was assessed. The input energy applied per unit volume of the soils was used to interpret the shearing response of crushable and noncrushable soils. The results showed that calcareous sands have more tendencies in contraction. Particle shape and breakage play a key role in engineering behavior of crushable soils.  相似文献   

7.
Peng  Yu  Liu  Jia-yi  Ding  Xuan-ming  Fang  Hua-qiang  Jiang  Chun-yong 《中国海洋工程》2020,34(5):621-630
China Ocean Engineering - To reveal the bearing capacity of the X-section pile group in coral sand, a series of model load tests are conducted. The testing results are presented as load-settlement...  相似文献   

8.
Coral reef calcareous sediment, a special category of rock-soil material, has representative geological structure and environmental characteristics. It is widely distributed in shallow areas of the tropical ocean; therefore the exploration instruments and technologies for engineering geology studies of coral reef calcareous sediments are very different from those used in land or deep-sea. Obtaining undisturbed cores from the Holocene unconsolidated stratum of coral reefs has been a key problem in the field of marine geology and environment surveying. The authors have designed a novel floating drilling platform equipped with a drilling machine, and successfully achieved undisturbed cores from both reef flats (with water depth 0.5 to 2 m) and a enclosed lagoon (with water depth 2–12 m) of Yongshu Reef (9°32–9°42 N, 112°52–113°04 E), southern South China Sea. Based on the detailed observation on the cores and the analysis from engineering geology, Yongshu Reef was split into reef three engineering geological zones: leading edge, reef flat (including outer reef flat, middle reef flat and inner reef flat) and lagoon. The sediments are classified in the stratum as fine sand, medium sand, coarse sand, gravel and weak-cemented reef limestone.  相似文献   

9.
Static load tests on pile group with prototype size were carried out in order to study the behavior and the working properties of the cap—pile group—soil interaction in the pile group foundation. The soil resistance under the cap, the pile shaft resistance and the tip resistance were measured by installing various measuring gauges. Based on these test results, the cap—pile group—soil interaction characteristics were analyzed. The regulations of the soil reaction on the cap, the shaft resistance and the tip resistance of pile, the mechanism of load transfer have been discussed with comparison to the result of the single pile tests. The bearing capacity of pile group is greater than the sum of the bearing capacity of the single pile obtained from testing in the same site in pile group foundation in the case presented here.  相似文献   

10.
Suction buckets are a promising foundation solution for offshore wind energy systems. The bearing behavior of monopod buckets under drained monotonic loading in very dense and medium dense sand is investigated in this study by means of numerical simulation with the finite element method. Special focus is given to the ultimate capacity and the initial stiffness of the bucket-soil foundation system. The numerical model is validated by comparison with field test results. The bearing behavior of the structure is explained through an evaluation of a reference system. It is shown that the bucket experiences a heave during horizontal loading, which leads to the formation of a gap between the bucket lid and the soil with increasing load. At large loads and rotations close to failure of the system there is no contact between lid and soil, and the whole load is transferred to the soil via the bucket skirt. A parametric study shows how the ultimate capacity and initial stiffness of the system depend on the bucket dimensions and loading conditions, i.e. load eccentricity. Normalized equations for ultimate capacity and initial stiffness are derived from the numerical simulation results, which can be used in the scope of a preliminary design for buckets in sand.  相似文献   

11.
Spudcan may experience punch-through failure on strong over weak layered soils, such as sand overlying clay. A large deformation finite element method (LDFE) is used to simulate the penetration process of spudcan into sand overlying clay. The sand is simulated by smoothed hyperbolic Mohr-Coulomb model, and the clay is simulated by a simple elasto-plastic model which obeys Tresca yield criterion. According to the LDFE results of a large amount of cases, the effects of the strength, unit weight and thickness of the top sand layer, as well as the effect of the strength of the underlying clay on the spudcan punch-through behavior, are investigated. The critical depth occurring punch-through and the critical bearing capacity are presented in charts. Fitting equations to calculate the critical punch-through depth and the critical bearing capacity are proposed for the convenience of engineering practice.  相似文献   

12.
Dai  Guo-liang  Zhu  Wen-bo  Zhai  Qian  Gong  Wei-ming  Zhao  Xue-liang 《中国海洋工程》2020,34(2):267-278
Suction caisson foundations are often subjected to vertical uplift loads, but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion. In order to study the uplift bearing mechanism and failure mode of suction caisson foundation, a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode. Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity. The smaller the permeability coefficient is, the higher the residual negative pressure will be. And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson. When the load reaches the ultimate bearing capacity, both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay. Combined the uplift bearing characteristics of caisson in sandy soil and soft clay, the bearing capacity composition and the calculation method are proposed. It can provide a reference for the engineering design of suction caisson foundation under vertical load.  相似文献   

13.
利用室内半模试验和颗粒流数值模拟,揭示多层砂土地基扩底桩单桩抗压承载特性及变形特征。结果表明,通过对比分析极限承载力与H_h/D(持力层厚度与扩大头直径之比)的关系可以看出,单桩的抗压极限承载力随H_h/D逐渐增加,当H_h/D超过2.0时,极限承载力基本不再增加,此时的单桩抗压极限承载力稳定在300.01~303.25 N,是H_h/D=0.5时极限承载力(183.83 N)的1.65倍。扩大头下部土体发生局部压缩-剪切破坏,破坏面从扩大头底面边缘向斜下方扩展,在水平方向影响范围达到最大后逐渐向桩内侧收缩;荷载作用越大,地基破坏区域越大,相应的极限抗压承载力也越大;持力层厚度增加,扩大头分担的荷载比例增大,分担的荷载达到稳定需要的桩顶位移也越大,H_h=0.5 D试验扩大头分担的荷载比例稳定时为60%,对应的桩顶位移约为29 mm;桩顶位移达到33 mm后,H_h=1.0~3.0 D试验稳定在63%~65%之间;通过细观颗粒流理论对砂土移动特性的研究发现,持力层厚度从0.5 D增大至2.0 D,破坏面的起始扩展角度从31°增大至42°。数值模拟研究结果与模型试验数据吻合效果良好,证明该方法分析多层砂土地基扩底桩单桩抗压荷载传递机理是可行的。  相似文献   

14.
Abstract

An experimental study of the performance of concrete pipe piles during installation under different penetration speeds and static load tests on the piles in sand is presented. The applied jacking force, the amount of pile penetration, length of soil plug formed and ultimate bearing capacity were measured during the model tests. The results showed that the concrete pipe piles were partially plugged and the behavior of the soil plug was significantly affected by the penetration speed. The lower the penetration speed, the larger the soil plug formed which in turn leads to a greater ultimate bearing capacity. The size of soil plug can be evaluated by the m value defined as the ratio of the volume of the soil plug to that of the penetrated pile wall. The relationship between the m value and the penetration speeds can be used to estimate the amount of soil plug and the depth of penetration for an open-ended concrete pipe pile jacked into sand.  相似文献   

15.
Li  Da-yong  Li  Shan-shan  Zhang  Yu-kun  Chen  Fu-quan 《中国海洋工程》2019,33(2):198-206
The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.  相似文献   

16.
ABSTRACT

Bucket foundations have been widely used for a variety of offshore applications. The effects of skirt length on ultimate bearing capacity of bucket foundation have been studied and reported in published scientific papers. However, few studies have addressed the behavior of bucket foundations in loose saturated sand. In this paper, a series of experimental investigations were performed to determine the bearing capacity of bucket foundation under uniaxial loading. The experiments were conducted on small-scale foundations under vertical loading in loose saturated sand. It was found that increasing the skirt length would enhance the bearing capacity of bucket foundation. As reflected in the present study, bearing strength might be enhanced more than 5 times in loose saturated sand in comparison to surface footing with equivalent diameter. Based on the experimental investigation, a depth factor was proposed to approximate bearing capacity of bucket foundations in terms of those for surface footing and embedment ratio. Moreover, the corresponding settlement of foundation at the failure load was found to increase with skirt length.  相似文献   

17.
Characterization of the hydraulic property of a specific geomaterial is of fundamental importance in engineering design and application. This paper reports an experimental investigation to the hydraulic conductivity of a typical marine sand, i.e., calcareous sand, which becomes increasingly popular as sea-filling material for land reclamation or construction of artificial islands. A series of permeability tests have been performed using the calcareous sand collected from Nansha islands in South China Sea. Using the home-made permeability test apparatus (so-called velocity-controlled pressure-differential acquisition flow apparatus), the relationship between flow velocity and hydraulic gradient was obtained and the hydraulic conductivity of calcareous sand was then determined accordingly. The effects of important parameters, including particle shape and particle size distribution on the hydraulic conductivity of calcareous sand, were assessed. To investigate the effect of particle size distribution on the hydraulic conductivity of calcareous sand, two often-used parameters, i.e., nonuniformity coefficient and curvature coefficient were considered in this study. To quantitatively evaluate the irregularity of soil particle, a particle-shape parameter was introduced and it was able to consider sphericity and circularity of highly irregular particle. Two materials, namely, Fujian quartz sand and glass beads consisting of particles of characteristic shape, were also used in the permeability tests, and they were used to compare with calcareous sand. Through the comparison, the effect of particle shape of calcareous sand on its hydraulic conductivity was examined based on the newly introduced particle shape parameter. The test results indicate that the particle size distribution has a significant influence on the hydraulic conductivity of calcareous sand. The quite irregular particle shape is able to reduce the hydraulic conductivity of the calcareous sand. A comparative study of hydraulic conductivity between the theoretical prediction and experimental measurement was performed, and it is concluded that an improvement of theoretical model for prediction of the hydraulic conductivity of the porous media consisting of particles with highly irregular shapes, such as the calcareous sand, is still required.  相似文献   

18.
Numerical analysis and centrifuge modeling of shallow foundations   总被引:1,自引:0,他引:1  
The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.  相似文献   

19.
A series of model tests was conducted in sand to explore the anti-uplift behavior of suction caissons, considering the effects of aspect ratios, load inclination angles and loading positions. This paper emphasizes on analyzing the deformation characteristic and the mechanism of the suction caissons under various loading conditions. The movement modes of the suction caisson are different when the load inclination angle increases from 0° to 90° corresponding to various mooring positions. The pull-out bearing capacity decreases with load inclination angles increasing. When the load inclination angle changes from 0° to 60°, the bearing capacity reduces more significantly than that between inclination angle of 60° and 90°. While the load inclination angle is relatively small, the pull-out capacity of the suction caisson decreases after reaching the peak as the loading position moves downwards. Moreover, the optimum loading position locates between 2/3 and 3/4 of the caisson length. The optimum loading position is at the bottom of the caisson when the load inclination angle exceeds 60°. However, the influence of the loading position on the pull-out capacity of the caisson can be ignored while the load inclination angle equals to 90°. The pull-out bearing capacity increases as the aspect ratio increases but the aspect ratio has no effect on the deformation characteristic of the suction caisson.  相似文献   

20.
周松望  王建华 《海洋工程》2014,32(1):106-111
在一个大型土池中进行了软土中组合四桶基础在竖向静荷载与水平循环荷载共同作用下的承载力模型试验,研究了竖向静荷载与水平循环荷载对组合桶形基础破坏形式与承载力的影响。试验结果表明,组合四桶基础的变形主要包括水平循环变形与竖向循环累积沉降。基础的破坏形式取决于水平循环荷载与竖向静荷载。若竖向静荷载较小,过大的水平循环位移将导致基础破坏;随竖向静荷载增加,竖向循环累积沉降将变为导致基础破坏的主要原因。试验结果还表明,在不同竖向静荷载与水平循环荷载共同作用下,基础的水平循环承载力大约为水平静承载力的70%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号