首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationship Between East Asian Winter Monsoon and Summer Monsoon   总被引:1,自引:0,他引:1  
Using National Centers for Environmental Prediction/National Centre for Atmospheric Research(NCEP/NCAR) reanalysis data and monthly Hadley Center sea surface temperature(SST) data,and selecting a representative East Asian winter monsoon(EAWM) index,this study investigated the relationship between EAWM and East Asian summer monsoon(EASM) using statistical analyses and numerical simulations.Some possible mechanisms regarding this relationship were also explored.Results indicate a close relationship between EAWM and EASM:a strong EAWM led to a strong EASM in the following summer,and a weak EAWM led to a weak EASM in the following summer.Anomalous EAWM has persistent impacts on the variation of SST in the tropical Indian Ocean and the South China Sea,and on the equatorial atmospheric thermal anomalies at both lower and upper levels.Through these impacts,the EAWM influences the land-sea thermal contrast in summer and the low-level atmospheric divergence and convergence over the Indo-Pacific region.It further affects the meridional monsoon circulation and other features of the EASM.Numerical simulations support the results of diagnostic analysis.The study provides useful information for predicting the EASM by analyzing the variations of preceding EAWM and tropical SST.  相似文献   

2.
1.IntroductionOvertheEastAsiaregion,themostprominentsurfacefeatureofthewintermonsoonisstrongnortheasterliesalongtheeastflankoftheSiberianhighandthecoastofEastAsia.At500hPathereisabroadtroughcenteredaboutatthelongitudesofJapan.Thedominantfea-tureat2O0hPaistheEastAsianjetwithitsmaximumlocatedatjustsoutheastofJapan.Thisktisassociatedwithintensebaroclinicity,largeverticalwindshearandstrongadvectionofcoldair(StaffmembersofAcademiaSinica,l957,LauandChang,1987;BoyleandChen,1987;Chenetal.,1991…  相似文献   

3.
Using large-scale variables, in this study we have developed a method for defining monsoon onset/retreat in the Australia-Asian region and used this method to study monsoon activities simulated by global climate models. For this purpose, the method needs to capture fundamental characteristics of monsoon rainfall and circulation seasonal variations and at the same time it can be reasonably simulated by current climate models. We develop the method by using both atmospheric precipitable water and wind conditions in our definition and compared our results using 44-year ERA-40 reanalysis data with some published results in the region. Our results offer similar features to several observational studies, including features in Australia-Asian summer monsoon temporal and spatial evolutions and their interannual variations. Results further show that the observed significant increase in summer rainfall in northwest Australia corresponds to earlier onset and much longer duration of its summer monsoon, with its duration significantly increased. Prolonged summer monsoon duration is also seen in central-east China where upward rainfall trend is observed. Furthermore, the Australian summer monsoon appears to be more affected by ENSO than the Asian monsoon, with delayed onsets and shortened durations during El Nino years. Finally, by analyzing results from an IPCC AR4 model, we have shown that using the two large-scale variables simulated by climate models, it is possible to conduct some detailed studies on monsoon activities in current and future climate. Results from this particular model suggest that global warming could potentially modify some of the monsoon characteristics, including earlier onset in most of the region but different features for changes in duration. In the Australian region, it also displays further southward penetration of its summer monsoon.  相似文献   

4.
Vasubandhu Misra  H. Li 《Climate Dynamics》2014,42(9-10):2491-2507
An extensive set of boreal summer seasonal hindcasts from a two tier system is compared with corresponding seasonal hindcasts from two other coupled ocean–atmosphere models for their seasonal prediction skill (for precipitation and surface temperature) of the Asian summer monsoon. The unique aspect of the two-tier system is that it is at relatively high resolution and the SST forcing is uniquely bias corrected from the multi-model averaged forecasted SST from the two coupled ocean–atmosphere models. Our analysis reveals: (a) The two-tier forecast system has seasonal prediction skill for precipitation that is comparable (over the Southeast Asian monsoon) or even higher (over the South Asian monsoon) than the coupled ocean–atmosphere. For seasonal anomalies of the surface temperature the results are more comparable across models, with all of them showing higher skill than that for precipitation. (b) Despite the improvement from the uncoupled AGCM all models in this study display a deterministic skill for seasonal precipitation anomalies over the Asian summer monsoon region to be weak. But there is useful probabilistic skill for tercile anomalies of precipitation and surface temperature that could be harvested from both the coupled and the uncoupled climate models. (c) Seasonal predictability of the South Asian summer monsoon (rainfall and temperature) does seem to stem from the remote ENSO forcing especially over the Indian monsoon region and the relatively weaker seasonal predictability in the Southeast Asian summer monsoon could be related to the comparatively weaker teleconnection with ENSO. The uncoupled AGCM with the bias corrected SST is able to leverage this teleconnection for improved seasonal prediction skill of the South Asian monsoon relative to the coupled models which display large systematic errors of the tropical SST’s.  相似文献   

5.
Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdecadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7– 10-years mode and 25–35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long-term predictability, which is a great challenge in climate research.  相似文献   

6.
This study aims at (1) exploring dominant atmospheric dynamical processes which are responsible for climate model-simulated land-use impacts on Asian monsoon; and (2) assessing uncertainty in such model simulations due to their skills in simulating detailed monsoon circulations in the region. Firstly, results from a series of the Australian Bureau of Meteorology Research Centre (BMRC) global model simulations of land-use vegetation changes (LUC) in China are analysed. The model showed consistent signals of changes in atmospheric low-level vertical profile and regional circulations responding to LUC. In northern winter, the model-simulated rainfall reduction and surface cooling are associated with an enhanced southward penetration of dry and cold air mass, which impedes warm and humid air reaching the region for generating cold-front rainfall. In its summer, an enhanced cyclonic circulation responding to LUC further blocks the northeast penetration of southwestly summer monsoon flow into the region and results in rainfall decreases and a surface warming. Secondly, we have explored uncertainties in the proposed mechanism operating in the global model. By comparing its results with a set of high-resolution regional model simulations using the same vegetation datasets, it reveals similar changes in winter rainfall but opposite features in summer rainfall responses. In the global model, there is a cyclonic low-level circulation pattern over the South China Sea and adjacent region, an unsatisfactory feature commonly seen in other global climate models. With the reduction in surface roughness following LUC, such a deficiency becomes more prominent which further results in a weakened south/southwestly summer monsoon flow and rainfall reduction. In contrast, in the regional model, its southwestly summer monsoon flow is further enhanced due to the same process as reduced surface roughness. The enhanced monsoon flow further pushes the East Asian monsoon rainfall belt more northward and increases summer rainfall in the Yangtze River region. This study highlights the need for better monsoon simulations in climate models to produce reliable climate change projections in the region.  相似文献   

7.
亚澳季风异常与ENSO准四年变化的联系分析   总被引:2,自引:0,他引:2  
分析了赤道地区纬向风的年际变化特征,以及亚澳季风与ENSO在各个位相的联系。结果表明:赤道纬向风变化与中东太平洋海温变化在准四年周期上是强烈耦合的;在El Eino期间东亚冬季风弱,夏季风强,而南亚夏季风弱,反之,在La Nina期间东亚冬季风强,夏季风弱,而南亚夏季风强;东亚地区的异常北风有利于西太平洋西风异常爆发,使得东太平洋海温升高,但只有随后在中东太平洋出现持续性西风异常,El Nino才能发展,其中来自太平洋中部的异常北风(并不是来自东亚大陆地区)和南太平洋中部的异常南风的辐合对中东太平洋出现持续性西风异常起重要的作用,尤其是澳大利亚东北部的季风异常的影响更为显。  相似文献   

8.
云南夏季旱涝与前期冬季环流变化的关系   总被引:3,自引:0,他引:3       下载免费PDF全文
夏季气候异常的前期信号特征分析一直是短期气候预测工作的重点。利用1948—2004年NCEP/NCAR月平均再分析资料、1961—2004年云南124个站的月平均降水和1948—2003年英国Hadley中心的月平均海温资料, 分析了云南夏季旱涝的时空特征, 探讨了云南夏季旱涝与前期大气环流和大气热力状态变化的关系, 发现云南夏季旱涝前冬12月—1月, 特别是1月东亚中高纬度地区的大气环流变化和赤道附近高低层大气的热力状态对云南夏季旱涝有重要的指示意义, 当前冬东亚大槽强 (弱), 冬季风强 (弱), 赤道附近高低层大气温度偏低 (高) 时, 后期云南夏季降水偏多 (少)。同时, 初步探讨了东亚冬夏季风环流变化的相互联系及热带海温变化的可能影响, 指出冬季到夏季印度洋和赤道西太平洋地区持续的海温异常有可能通过改变夏季海陆的热力对比, 进而影响夏季风活动和云南夏季降水的变化。  相似文献   

9.
Summary ¶The potential predictability of the monthly and seasonal means during the Northern Hemisphere summer and winter is studied by estimating the signal-to-noise ratio. Based on 33 years of daily low-level wind observations and 24 years of satellite observations of outgoing long wave radiation, the predictability of the Asian summer monsoon region is contrasted with that over other tropical regions. A method of separating the contributions from slowly varying boundary forcing and internal dynamics (e.g., intraseasonal oscillations) that determine the predictability of the monthly mean tropical climate is proposed. We show that the Indian monsoon climate is only marginally predictable in monthly time scales as the contribution of the boundary forcing in this region is relatively low and that of the internal dynamics is relatively large. It is shown that excluding the Indian monsoon region, the predictable region is larger and predictability is higher in the tropics during northern summer. Even though the boundary forced variance is large during northern winter, the predictable region is smaller as the internal variance is larger and covers a larger region during northern winter (due to stronger intraseasonal activity). Consistent with the estimates of predictability of monthly means, estimates of potential predictability on seasonal time scales also indicate that predictability of seasonal mean Indian monsoon is limited.Received December 6, 2002; accepted March 16, 2003 Published online: June 12, 2003  相似文献   

10.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

11.
Summary This study addresses the relationship between the Indian summer monsoon (ISM) and the coupled atmosphere/ocean system in the tropical Pacific on the interannual time scales. High positive correlations are found between ISM rainfall and both mixed layer sea water temperature (SWT) and sea surface temperature (SST) anomalies of the tropical western Pacific in the following winter. Negative correlations between ISM rainfall and SST in the central/eastern Pacific also appear to be most significant in the following winter. These parameters are correlated with each other mainly on a biennial time scale. Lag-correlations between the zonal wind and SST along the the equatorial Pacific show that the westerly (easterly) surface wind stress anomalies over the central/western Pacific are greatly responsible for the formation of negative (positive) SST/SWT anomalies in the western Pacific and positive (negative) SST/SWT anomalies in the central/eastern Pacific. Furthermore, it is evidenced that these lagcorrelations are physically based on the anomalies in the large-scale convection over the Asian monsoon region and the associated east-west circulation over the tropical Pacific, which first appear during the Indian summer monsoon season and evolve during the following autumn and winter. These results strongly suggest that the Asian summer monsoon may have an active, rather than a passive, role on the interannual variability, including the ENSO events, of the coupled atmosphere/ocean system over the tropical Pacific.With 9 Figures  相似文献   

12.
Based on the simulation results derived from ECHO-G global coupled climate model, several East Asian winter monsoon (EAWM) indices are compared in order to choose the most suitable one for signaling the intensity of winter monsoon in the last millennium. The index I_shi, which is defined with normalized sea level pressure difference between sea and land in mid and low latitudes, is selected to describe the winter monsoon intensity variation owing to its better capability for reflecting the variation of winter monsoon subsystems, such as the continental high pressure, Aleutian low, East Asian major trough, westerly jet stream, and surface air temperature than the other indices examined. Wavelet analysis on index I_shi shows that the EAWM intensity is characterized by multi-timescale variation with inter-annual, decadal, inter-decadal and inter-centennial oscillations on the background of a slight descending trend. Correlation analysis between the EAWM index and sea surface temperature (SST) at various timescales reveals that the SST in mid-latitudes might provide the background of the EAWM strength changes above decadal timescales, and a negative-feedback process lasting for about two years is found between the EAWM intensity and the SST in the eastern equatorial Pacific. According to the correlation, the El Nino occurrence in the second-half of the year leads to weaker EAWM than normal in the following winter and the weakened EAWM corresponds to lower SST in eastern equatorial Pacific after about half a year, which will then strengthen the EAWM intensity in the next winter. It is a stable feedback process and its mechanism is discussed.  相似文献   

13.
Modulation of a monsoon under glacial forcing is examined using an atmosphere?Cocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air?Csea?Cland interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21?ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer convection.  相似文献   

14.
利用NCEP/NCAR再分析资料、Hadley中心海温资料及CMAP降水资料等,通过亚澳季风联合指数挑选异常年份,对东亚夏季风和澳洲冬季风强度反相变化特征进行研究。结果表明,当东亚夏季风偏强、澳洲冬季风偏弱时,南北半球中低纬地区都出现了复杂的异常环流系统。在热带地区对流层低层,西北太平洋为异常反气旋式环流系统所控制,与南太平洋赤道辐合带的异常反气旋环流在赤道地区发生耦合,形成赤道异常东风,而在南北印度洋上则存在两个异常气旋式环流系统。在这两对异常环流之间的海洋性大陆地区,出现赤道以南为反气旋环流而赤道以北为气旋式环流。在东亚季风区,东南沿海的东侧海洋上存在反气旋异常,中国东南地区受异常反气旋西南侧的东南风影响。此外,澳洲北部受异常西风影响。这就形成了东亚夏季风偏强、澳洲冬季风偏弱的情形,从而东亚夏季风和澳洲冬季风活动出现了强弱互补的变化特征。当东亚夏季风偏弱、澳洲冬季风偏强时,南北半球的环流特征则出现与上述相反的环流特征。总体而言,当东亚夏季风偏强、澳洲冬季风偏弱时,东亚—澳洲季风区在南北半球呈现出不同的气候异常分布特征,即北半球降水北少南多、气温北高南低,南半球降水西多东少、气温西高东低。  相似文献   

15.
The temporal variations during 1948-2010 and vertical structures of the summer Somali and Australia cross-equatorial flows(CEFs) and the implications for the Asian summer monsoon were explored in this study.The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level,respectively.The low-level Somali(LLS) CEFs were significantly connected with the rainfall in most regions of India(especially the monsoon regions),except in a small area in southwest India.In comparison to the climatology,the lowlevel Australia(LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs.The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China.The sea-surface temperature anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer,with implications for the seasonal prediction of summer rainfall in East Asia.The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with El Nino-Southern Oscillation.In addition,both the LLA and LLS CEFs exhibited interdecadal shifts in the late 1970s and the late 1990s,consistent with the phase shifts of Pacific Decadal Oscillation(PDO).  相似文献   

16.
东亚冬季风强度的统计预测方法研究   总被引:10,自引:3,他引:7  
利用1961~2008年NCEP再分析和NOAA延长重构的月平均海温资料, 基于海气系统关键区的前期信号分析, 建立了一个东亚冬季风强度的统计预测方法。东亚冬季风强度与前期 (9~10月) 黑潮及其延伸区和热带西印度洋海温异常 (SSTA) 密切相关。强东亚冬季风活动与黑潮及其延伸区正SSTA和热带西印度洋负SSTA相对应。东亚冬季风强度还和一个前期 (10月) 北半球环流型存在显著相关, 其中环流型的活动中心分别位于北太平洋中部、 太平洋东北部、 北美和北大西洋。文中探讨了这三个预测因子对东亚冬季风强度的预测意义, 并揭示了其影响东亚冬季风活动的可能物理过程。该预测方法的历史拟合率和试报准确率较高, 可用于东亚冬季风强度的定性预测。  相似文献   

17.
Instead of conventional East Asian winter monsoon indices(EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index(UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature(SAT) variations north of 40?N in the EAWM region. Second, the well-known western Pacific teleconnection index(WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40?N in the EAWM region.The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode(NTM) and the southern temperature mode(STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI–NTM and WPI–STM relationships are robust when the correlation analysis is repeated by(1) the 31-year running correlation and(2) the 8-year high-pass and low-pass filter. Hence,these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. In particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.  相似文献   

18.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   

19.
黄荣辉  顾雷  陈际龙 《大气科学》2008,32(4):691-719
本文回顾了关于东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展。许多研究说明,东亚季风系统无论风场的垂直结构、年循环或是水汽输送和降水特征都明显不同于南亚和北澳季风系统,它是亚澳季风系统中一个相对独立的季风系统。并且,研究结果表明了东亚季风系统有明显的时空变化:其中夏季风系统在年际时间尺度上存在着一个准两年周期振荡和具有极向三极子异常的空间分布特征,并从20世纪70年代中后期起至今发生了明显变弱的年代际变化,这个变化在华北尤其显著;而东亚冬季风在年际时间尺度上存在一个准四年周期振荡,从20世纪80年代中后期起也发生了明显变弱的年代际变化,它引起了我国的持续暖冬。进一步的研究还揭示了东亚季风系统的变异是与海–陆–气耦合系统变异及其相互作用密切相关,因而,东亚季风系统可以看成是一个大气–海洋–陆地的耦合气候系统,即称之为东亚季风气候系统。此外,本文还从上述东亚季风气候系统的年际和年代际变异提出了长江流域严重洪涝灾害发生的气候学概念模型和华北持续干旱的气候背景。  相似文献   

20.
Mechanisms determining the tropospheric temperature gradient that is related to the intensity of the Asian summer monsoon are examined in an intermediate atmospheric model coupled with a mixed-layer ocean and a simple land surface model with an idealized Afro–Eurasian continent and no physical topography. These include processes involving in the influence of the Eurasian continent, thermal effects of the Tibetan Plateau and effects of sea surface temperature. The mechanical effect on the large-scale flow induced by the Plateau is not included in this study. The idealized land–sea geometry without topography induces a positive meridional tropospheric temperature gradient thus a weak Asian summer monsoon circulation. Higher prescribed heating and weaker surface albedo over Eurasia and the Tibetan Plateau, which mimic effects of different land surface processes and the thermal effect of the uplift of the Tibetan Plateau, strengthens the meridional temperature gradient, and so as cold tropical SST anomalies. The strengthened meridional temperature gradient enhances the Asian summer monsoon circulation and favors the strong convection. The corresponding monsoon rainbelt extends northward and northeastward and creates variations of the monsoon rainfall anomalies in different subregions. The surface albedo over the Tibetan Plateau has a relatively weak inverse relation with the intensity of the Asian summer monsoon. The longitudinal gradient of ENSO-like SST anomalies induces a more complicated pattern of the tropospheric temperature anomalies. First, the positive (negative) longitudinal gradient induced by the El Niño (La Niña)-like SST anomalies weakens (strengthens) the Walker circulation and the circulation between South Asia and northern Africa and therefore the intensity of the Asian summer monsoon, while the corresponding monsoon rainbelt extends northward (southward). The El Niño (La Niña)-like SST anomalies also induces colder (warmer) tropospheric temperature over Eurasia and warmer (colder) tropospheric temperature over the Indian Ocean. The associated negative (positive) meridional gradient of the tropospheric temperature anomalies is consistent with the existence of the weak (strong) Asian summer monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号