首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
On the capillary stress tensor in wet granular materials   总被引:3,自引:0,他引:3  
This paper presents a micromechanical study of unsaturated granular media in the pendular regime, based on numerical experiments using the discrete element method, compared with a microstructural elastoplastic model. Water effects are taken into account by adding capillary menisci at contacts and their consequences in terms of force and water volume are studied. Simulations of triaxial compression tests are used to investigate both macro and micro‐effects of a partial saturation. The results provided by the two methods appear to be in good agreement, reproducing the major trends of a partially saturated granular assembly, such as the increase in the shear strength and the hardening with suction. Moreover, a capillary stress tensor is exhibited from capillary forces by using homogenization techniques. Both macroscopic and microscopic considerations emphasize an induced anisotropy of the capillary stress tensor in relation with the pore fluid distribution inside the material. Insofar as the tensorial nature of this fluid fabric implies shear effects on the solid phase associated with suction, a comparison has been made with the standard equivalent pore pressure assumption. It is shown that water effects induce microstructural phenomena that cannot be considered at the macro level, particularly when dealing with material history. Thus, the study points out that unsaturated soil stress definitions should include, besides the macroscopic stresses such as the total stress, the microscopic interparticle stresses such as the ones resulting from capillary forces, in order to interpret more precisely the implications of the pore fluid on the mechanical behaviour of granular materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, an existing elastoplastic constitutive model, originally developed for granular soils, is adapted to describe the stress–strain behaviour of cemented granular soils. The existing model (CJS), due to its modular formulation, can be easily developed to take into account different supplementary behavioural aspects in soil mechanics. In the present study, the failure mechanism of the CJS model is modified by introducing the essential aspects in the behaviour of cemented granular soils in its formulation. All of the model parameters have clear physical meaning and can be identified using classical laboratory tests. A set of direct relations between model parameters and famous mechanical parameters of soils such as internal friction angle and cohesion at peak and residual states is presented. In order to validate the model, the results of triaxial and uniaxial tests in the compression and extension performed on cemented granular materials are used. The validation results indicate the good capability of the proposed model.  相似文献   

3.
The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.  相似文献   

4.
颗粒破碎对颗粒材料宏观力学行为有重要影响。 结合Hardin的破碎经验公式,将表征破碎程度的破碎参量与Cosserat连续体的内部长度参数相关联,形成一个基于Cosserat连续体且能考虑颗粒破碎的弹塑性模型。数值算例主要考察了颗粒破碎对颗粒材料承载能力、塑性应变及局部化行为的影响,数值结果表明,颗粒破碎主要发生在剪切带内,颗粒破碎使得剪切带明显变窄且剪切带内外等效塑性应变梯度明显增大。  相似文献   

5.
For discrete materials like sands, the continuum field variables, stress and strain, are defined in terms of micro-level quantities by considering the deformation mechanism of granular soils from a microscopic point of view. Under the application of load, soil is considered to deform due to the movement relative to each other of clusters of particles. Based on this deformation mechanism, the kinematics of soils are developed and a strain tensor for granular soils, in terms of local displacements and geometric measures, is introduced. A local constitutive law relating local displacements and local tractions is defined. Using the local constitutive law, the relationships between stress and strain for the media are developed. The developed model incorporates the influence of strain hardening and material anisotropy on the deformation behaviour of the media. Comparisons of the model predictions and experimental results from tests conducted in cubical and hollow cylinder devices are presented.  相似文献   

6.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   

7.
A new method is proposed for the development of a class of elastoplastic thermomicromechanical constitutive laws for granular materials. The method engenders physical transparency in the constitutive formulation of multiscale phenomena from the particle to bulk. We demonstrate this approach for dense, cohesionless granular media under quasi-static loading conditions. The resulting constitutive law—expressed solely in terms of particle scale properties—is the first of its kind. Micromechanical relations for the internal variables, tied to nonaffine deformation, and their evolution laws, are derived from a structural mechanical analysis of a particular mesoscopic event: confined, elastoplastic buckling of a force chain. It is shown that the constitutive law can reproduce the defining behavior of strain-softening under dilatation in both the mesoscopic and macroscopic scales, and reliably predict the formation and evolution of shear bands. The thickness and angle of the shear band, the distribution of particle rotation and the evolution of the normal contact force anisotropy inside the band, are consistent with those observed in discrete element simulations and physical experiments.  相似文献   

8.
In this paper a micro‐polar continuum approach is proposed to model the essential properties of cohesionless granular materials like sand. The model takes into account the influence of particle rotations, the mean grain size, the void ratio, the stresses and couple stresses. The constitutive equations for the stresses and couple stresses are incrementally non‐linear and based on the concept of hypoplasticity. For plane strain problems the implementation of the model in a finite element program is described. Numerical studies of the evolution of micro‐polar effects within a granular strip under plane shearing are presented. It is shown that the location and evolution of shear localization is strongly influenced by the initial state and the micro‐polar boundary conditions. For large shearing the state quantities tend towards a stationary state for which a certain coupling between the norm of the stress deviator and the norm of the couple stress tensor can be derived. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
It has been known that classical continuum mechanics laws fail to describe strain localization in granular materials due to the mathematical ill‐posedness and mesh dependency. Therefore, a non‐local theory with internal length scales is needed to overcome such problems. The micropolar and high‐order gradient theories can be considered as good examples to characterize the strain localization in granular materials. The fact that internal length scales are needed requires micromechanical models or laws; however, the classical constitutive models can be enhanced through the stress invariants to incorporate the Micropolar effects. In this paper, Lade's single hardening model is enhanced to account for the couple stress and Cosserat rotation and the internal length scales are incorporated accordingly. The enhanced Lade's model and its material properties are discussed in detail; then the finite element formulations in the Updated Lagrangian Frame (UL) are used. The finite element formulations were implemented into a user element subroutine for ABAQUS (UEL) and the solution method is discussed in the companion paper. The model was found to predict the strain localization in granular materials with low dependency on the finite element mesh size. The shear band was found to reflect on a certain angle when it hit a rigid boundary. Applications for the model on plane strain specimens tested in the laboratory are discussed in the companion paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The paper presents Cauchy stress tensor computation over parallel grids of message passing interface (MPI) parallel three-dimensional (3D) discrete element method (DEM) simulations of granular materials, considering spherical and nonspherical particles. The stress tensor computation is studied for quasi-static and dynamic conditions, and its resulting symmetry or asymmetry is discussed within the context of classical continuum mechanics (CCM), granular materials mechanics (GMM), and micropolar continuum mechanics (MCM). The average Cauchy stress tensor computation follows Bagi's and Nicot's formulations and is verified within MPI parallel 3D DEM simulations involving dynamically adaptive compute grids. These grids allow calculation of temporal and spatial distributions of stress across granular materials under static and dynamic conditions. The vertical stress component in gravitationally deposited particle assemblies exhibits nonuniform spatial distributions under static equilibrium, and its zone of maximum value changes during the process of gravitational pluviation and collapse. These phenomena reveal a microstructural effect on stress distribution within granular materials that is attributed to their discrete particulate nature (particle size, shape, gradation, boundary conditions, etc).  相似文献   

11.
Constitutive modeling of granular materials has been a subject of extensive research for many years. While the calculation of the Cauchy stress tensor using the discrete element method has been well established in the literature, the formulation and interpretation of the strain tensor are not as well documented. According to Bagi, 1 researchers mostly adopt well‐known continuum or discrete microstructural approaches to calculate strains within granular materials. However, neither of the 2 approaches can fully capture the behavior of granular materials. They are considered complementary to each other where each has its own strengths and limitations in solving granular‐mechanics problems. Zhang and Regueiro 2 proposed an equivalent continuum approach to calculating finite strain measures at the local level in granular materials subjected to large deformations. They used three‐dimensional discrete element method results to compare the proposed strains measures. This paper presents an experimental application of the Zhang and Regueiro 2 approach using three‐dimensional synchrotron microcomputed tomography images of a sheared Ottawa sand specimen. Invariant Eulerian finite strain measures were calculated for representative element volumes within the specimen. The spatial maps of Eulerian octahedral shear and volumetric strain were used to identify zones of intense shearing within the specimen and compared well with maps of incremental particle translation and rotation for the same specimen. The local Eulerian volumetric strain was compared to the global volumetric strains, which also can be considered as an averaging of all local Eulerian volumetric strains.  相似文献   

12.
The mechanical behavior of granular materials is characterized by strong nonlinearity and irreversibility. These properties have been differently described by a variety of constitutive models. To test any constitutive model, experimental data relative to the nature of the incremental stress–strain response of the material is desirable. However, this type of laboratory data is scarce because of being expensive and difficult to obtain. The discrete element method has been used several times as an alternative to obtain incremental responses of granular materials. Crushable grains add one extra source of irreversibility to granular materials. Crushability has been variously incorporated into different constitutive models. Again, it will be helpful to obtain incremental responses of crushable granular materials to test these models, but the experimental difficulties are increased. Making use of a recently introduced crushing model for discrete element simulation, this paper presents a new procedure to obtain incremental responses in discrete analogs of granular crushable materials. The parallel probe approach, previously used for uncrushable discrete analogs, is here extended to account for the presence of crushable grains. The contribution of grain crushing to the incremental irreversible strain is identified and separately measured. Robustness of the proposed method is examined in detail, paying particular attention to aspects such as dynamic instability or crushing localization. The proposed procedure is later applied to map incremental responses of a discrete analog of Fontainebleau sand on the triaxial plane. The effect of stress ratio and granular state on plastic flow characteristics is highlighted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This article deals with the effect of grain crushing on shear localization in granular materials during plane strain monotonic compression tests under constant lateral pressure. The grain diameter and the initial void ratio were stochastically distributed using a spatial correlation. To describe the mechanical behavior of cohesionless granular materials during a monotonic deformation path in plane strain compression, we used a micropolar hypoplastic constitutive model that is able to describe the salient properties of granular bodies including shear localization. The model was extended by introducing changes to the grain diameter with varying pressure using formulae from breakage mechanics proposed for crushable granulates. The initial void ratios and grain diameters took the form of correlated random spatial fields described by both symmetric and nonsymmetric random distributions using a homogeneous correlation function. The field realizations were generated with the help of an original conditional rejection method. A few representative samples of the random fields selected from the generated set were taken into account in numerical calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The paper investigates aspects of the localization analysis of frictional materials. We derive closed formulas and diagrams for the inclination angle of critical discontinuity surfaces which develop in homogeneous compression and biaxial loading tests. The localization analysis is based on a Drucker–Prager‐type elastoplastic hardening model for non‐associated plastic flow at small strains, which we represent in spectral form. For this type of constitutive model, general analytical formulas for the so‐called critical hardening modulus and the inclination angle of critical discontinuity surfaces are derived for the plane strain case. The subsequent treatment then specializes these formulas for the analysis of compression and biaxial loading modes. The key contribution here is a detailed analysis of plane strain deformation modes where the localized failure occurs after subsequent plastic flow. The derived formulas and diagrams can be applied to the checking of an accompanying localization analysis of frictional materials in finite‐element computations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic‐reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5‐m tall, full‐scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well‐documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre‐localization constitutive models, including a family of three‐invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A constitutive model for granular materials is developed within the framework of strain–hardening elastoplasticity, aiming at describing some of the macroscopic effects of the degradation processes associated with grain crushing. The central assumption of the paper is that, upon loading, the frictional properties of the material are modified as a consequence of the changes in grain size distribution. The effects of these irreversible microscopic processes are described macroscopically as accumulated plastic strain. Plastic strain drives the evolution of internal variables which model phenomenologically the changes of mechanical properties induced by grain crushing by controlling the geometry of the yield locus and the direction of plastic flow. An application of the model to Pozzolana Nera is presented. The stress–dilatancy relationship observed for this material is used as a guidance for the formulation of hardening laws. One of the salient features of the proposed model is its capability of reproducing the stress–dilatancy behaviour observed in Pozzolana Nera, for which the minimum value of dilatancy always follows the maximum stress ratio experienced by the material. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
陈龙  楚锡华  徐远杰 《岩土力学》2015,36(6):1598-1605
亚塑性模型为模拟颗粒材料的非线性力学行为提供了一条新途径,特别是CLoE亚塑性模型在模拟应变局部化时具有一定的优势。然而该模型在模拟小幅应力-应变循环时表现出一定的锯齿效应。为了克服该效应,基于颗粒间应变张量的概念发展了修正的CLoE亚塑性模型以正确模拟循环荷载下密砂的力学行为。此外,为保证单调荷载作用下修正模型与原模型预测结果的一致性,改进了颗粒间应变率及颗粒间最大应变的定义。数值算例表明:(1)修正模型保留了克服锯齿效应的优点。(2)修正模型能够反映不同振幅条件下的卸载刚度。(3)在大振幅循环条件下,滞回圈的面积随着循环次数增加而增大。(4)修正模型能够保证单调加载条件下所得结果与原模型的一致性。(5)修正模型可以反映材料的疲劳破坏机制。  相似文献   

18.
建立尾砂的本构模型是开展尾矿坝数值模拟和安全评价的重要基础,而目前尾砂的本构模型研究多集中于非线性弹性模型,如Duncan-Chang模型,关于弹塑性模型的研究较少。结合尾砂的应力-应变特性,提出了一种适用于描述尾砂力学特性的改进广义塑性模型。基于用户自定义材料子程序UMAT,将提出的模型在ABAQUS中二次开发实现,应力积分采用Runge-Kutta显式积分。通过三轴试验模拟验证,偏差应力曲线表明,有限元计算结果可以反映围压对应力-应变关系的影响,抗剪强度随应变逐渐硬化,达到峰值强度,随后发生应变软化,抗剪强度有所下降。体应变曲线结果表明,广义塑性模型可以很好地描述体应变曲线的体缩-体胀发展过程,与试验曲线吻合较好。同时有限元数值模拟结果和理论值误差很小,且和试验结果拟合较好。该研究成果可进一步用于尾矿坝的应力变形计算和安全评价。  相似文献   

19.
不同应力路径下剪切带的数值模拟   总被引:4,自引:1,他引:3  
孙德安  甄文战 《岩土力学》2010,31(7):2253-2258
采用回映应力更新算法,编写了基于伏斯列夫面的超固结黏土本构关系模型子程序,嵌入非线性有限元软件ABAQUS。通过对单元试验进行三轴压缩、三轴伸长及平面应变等问题的模型预测,再现了超固结黏土在不同初始超固结比和应力路径时的变形和强度特性,从而验证了子程序的正确性。借助该本构模型,对三轴压缩、三轴伸长及平面应变应力路径下超固结黏土体变形局部化问题,进行了三维数值模拟。分析结果表明:超固结黏土在三轴压缩及伸长状态时,土体变形局部化在应力-应变关系软化时出现,而平面应变状态时,在应力-应变关系硬化阶段出现,其超固结黏土的剪胀特性在剪切带的形成过程中起重要作用。  相似文献   

20.
A matrix relating stress and elastic strain tensors for anisotropic particulate materials has been derived. The magnitude of the matrix depends on the state of the material anisotropy. Anisotropy in granular materials depends on strain because normal and tangential particle contact forces, as well as the spatial distribution of the contacts, vary with stress and strain. However, the rotation tensor and the strain tensor cannot be independent; they must satisfy certain constraints to meet the requirement for macroscopic stress tensor symmetry. These conditions and constraints lead to the derivation of the matrix presented in this article. The principal directions of the stress tensor and strain tensor are generally not coincident, and the values of deformation parameters, Young's modulus and Poisson's ratio, are direction dependent; these two aspects are also discussed in this paper. Whereas this matrix can be used in static numerical analyses for elastic problems, we note that this relationship can also be used as a basis upon which to derive a fully incremental stress–strain relationship for anisotropic granular materials in the plastic state, where the anisotropy is evolving with strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号