首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This paper investigates the dynamic characteristics and seismic behavior of prefabricated steel stairs in a full‐scale five‐story building shake table test program. The test building was subjected to a suite of earthquake input motions and low‐amplitude white noise base excitations first, while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. This paper presents the modal characteristics of the stairs identified using the data recorded from white noise base excitation tests as well as the physical and measured responses of the stairs from the earthquake tests. The observed damage to the stairs is categorized into three distinct damage states and is correlated with the interstory drift demands of the building. These shake table tests highlight the seismic vulnerability of modern designed stair systems and in particular identifies as a key research need the importance of improving the deformability of flight‐to‐building connections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents results of a comprehensive experimental program on the seismic response of full‐scale freestanding laboratory equipment. First, quasi‐static experiments are conducted to examine the mechanical behavior of the contact interface between the laboratory equipment and floors. Based on the experimental results, the response analysis that follows adopts two idealized contact friction models: the elastoplastic model and the classical Coulomb friction model. Subsequently, the paper presents shake table test results of full‐scale freestanding equipment subjected to ground and floor motions of hazard levels with corresponding displacements that can be accommodated by the shake table at the UC Berkeley Earthquake Engineering Research Center. For the equipment tested, although some rocking is observed, sliding is the predominant mode of response, with sliding displacements reaching up to 60 cm. Numerical simulations with the proposed models are performed. Finally, the paper identifies a physically motivated intensity measure and the associated engineering demand parameter with the help of dimensional analysis and presents ready‐to‐use fragility curves. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
为研究复合材料电气设备抗震性能与减震技术应用效果,对特高压复合支柱材料绝缘子进行了抗震与减震地震模拟振动台试验,研究了设备动力特性和地震响应。白噪声试验结果表明:该复合材料支柱绝缘子在安装减震器后第1阶频率由1.11 Hz降低到1.04 Hz,表明减震器对设备结构的整体刚度影响较小。3种地震波试验结果表明:设备地震响应与地震动峰值加速度在抗震试验中呈线性变化关系,但在减震试验的应力响应中呈非线性变化关系;设备安装减震器后,试验地震动峰值加速度越大,减震效率越高,最高达到了66.32%;而位移减震率与地震动峰值加速度无明显规律,最大位移减震率为49.36%。试验研究结果表明:试验设备安装减震器后抗震性能得到显著提升,为复合材料电气设备抗震性能研究与减震技术应用提供了参考依据。  相似文献   

4.
Economic losses during past earthquakes are strongly associated with damage and failure to nonstructural equipment and contents. Among the vast types of nonstructural elements, one important category, is scientific equipment in biological or chemical laboratories. These equipment are often mounted on heavy ceramic bench‐tops of bench–shelf systems, which in turn may amplify the dynamic motions imposed. To investigate the seismic response of these types of systems, a series of shake table and field experiments were conducted considering different representative bench and shelf‐mounted equipment and contents. Results from shake table experiments indicate that these equipment are generally sliding‐dominated. In addition, the bench–shelf system is observed to be very stiff and when lightly loaded, has a fundamental frequency between 10 and 16 Hz. An approximate 50% reduction in the first and second fundamental frequencies is observed considering practical loading conditions. Insight into a broader range of system response is provided by conducting eigenvalue and time history analyses. Non‐linear regression through the numerical data indicate acceleration amplification ratios Ω range from 2.6 to 1.4 and from 4.3 to 1.6, for fixed–fixed and pinned–pinned conditions, respectively. Both the experimental and numerical results support the importance of determining the potential dynamic amplification of motion in the context of accurately determining the maximum sliding displacement of support equipment and contents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Recent studies have indicated uncertainty about the performance limit states of seismically isolated buildings in very large earthquakes, especially if the isolator displacement demands exceed the seismic gap and induce pounding. Previous research has shown the benefit of providing phased supplemental damping that does not affect the isolation system response in a design event. A phased passive control device, or gap damper, was designed, fabricated, and experimentally evaluated during shake table testing of a quarter scale base‐isolated three‐story steel frame building. Identical input motions were applied to system configurations without a gap damper and with a gap damper, to directly assess the influence of the gap damper on displacement and acceleration demands. The gap damper was observed to reduce displacement demands by up to 15% relative to the isolated system without the gap damper. Superstructure floor accelerations increased substantially because of damper activation, but were limited to a peak of about 1.18 g. The gap damper reduces displacement most effectively if the ground motion contains one or more of the following characteristics: the spectral displacement increases with increasing period near the effective period of the isolation system, the motion is dominated by a single large pulse rather than multiple cycles at a consistent intensity, and the motion has a dominant component aligned with a major axis of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Among several different experimental techniques, used to test the response of structures and to verify their seismic performance, the shake table testing allows to reproduce the conditions of true effects of earthquake ground motions in order to challenge complex model structures and systems. However, the reproduction of dynamic signals, due to the dynamics of the shake table and of the specimen, is usually imperfect even though closed‐loop control in a shake table system is used to reduce these errors and obtain the best fidelity reproduction. Furthermore, because of the dynamic amplifications in the specimen, the signal recorded at desired locations could be completely different from the expected effect of shake table motion. This paper focuses on the development of practical shake table simulations using additional ‘open loop’ feedforward compensation in form of inverse transfer functions (i.e. the ratio of the output structural response to an input base motion in the frequency domain) in order to obtain an acceptable reproduction of desired acceleration histories at specific locations in the specimen. As the first step, a well‐known global feedforward procedure is reformulated for the compensation of the table motion distortions due to the servo‐hydraulic system. Subsequently, the same concept is extended to the table‐structure system to adjust the shake table input in order to achieve a desired response spectrum at any floor of the specimen. Implementations show how such a method can be used in any experimental facility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Floor isolation is an alternative to base isolation for protecting a specific group of equipment installed on a single floor or room in a fixed‐base structure. The acceleration of the isolated floor should be mitigated to protect the equipment, and the displacement needs to be suppressed, especially under long‐period motions, to save more space for the floor to place equipment. To design floor isolation systems that reduce acceleration and displacement for both short‐period and long‐period motions, semi‐active control with a newly proposed method using the linear quadratic regulator (LQR) control with frequency‐dependent scheduled gain (LQRSG) is adopted. The LQRSG method is developed to account for the frequency characteristics of the input motion. It updates the control gain calculated by the LQR control based on the relationship between the control gain and dominant frequency of the input motion. The dominant frequency is detected in real time using a window method. To verify the effectiveness of the LQRSG method, a series of shake table tests is performed for a semi‐active floor isolation system with rolling pendulum isolators and a magnetic‐rheological damper. The test results show that the LQRSG method is significantly more effective than the LQR control over a range of short‐period and long‐period motions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

10.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A full‐scale five‐story reinforced concrete building was built and tested on the NEES‐UCSD shake table during the period from May 2011 to May 2012. The purpose of this test program was to study the response of the structure and nonstructural components and systems (NCSs) and their dynamic interaction during seismic base excitation of different intensities. The building specimen was tested first under a base‐isolated condition and then under a fixed‐based condition. As the building was being erected, an accelerometer array was deployed on the specimen to study the evolution of its modal parameters during the construction process and placement of major NCSs. A sequence of dynamic tests, including daily ambient vibration, shock (free vibration) and forced vibration tests (low‐amplitude white noise and seismic base excitations), were performed on the building at different stages of construction. Different state‐of‐the‐art system identification methods, including three output‐only and two input‐output methods, were used to estimate the modal properties of the building. The obtained results allow to investigate in detail the effects of the construction process and NCSs on the dynamic parameters of this building system and to compare the modal properties obtained from different methods, as well as the performance of these methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This study proposes an innovative passive vibration mitigation device employing essentially nonlinear elastomeric springs as its most critical component. Essential nonlinearity denotes the absence (or near absence) of a linear component in the stiffness characteristics of these elastomeric springs. These devices were implemented and tested on a large‐scale nine‐story model building structure. The main focus of these devices is to mitigate structural response under impulse‐like and seismic loading when the structure remains elastic. During the design process of the device, numerical simulations, optimizations, and parametric studies of the structure‐device system were performed to obtain stiffness parameters for the devices so that they can maximize the apparent damping of the fundamental mode of the structure. Pyramidal elastomeric springs were employed to physically realize the optimized essentially nonlinear spring components. Component‐level finite element analyses and experiments were conducted to design the nonlinear springs. Finally, shake table tests using impulse‐like and seismic excitation with different loading levels were performed to experimentally evaluate the performance of the device. Experimental results demonstrate that the properly designed devices can mitigate structural vibration responses, including floor acceleration, displacement, and column strain in an effective, rapid, and robust fashion. Comparison between numerical and experimental results verified the computational model of the nonlinear system and provided a comprehensive verification for the proposed device. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper investigates the seismic response of freestanding equipment when subjected to strong earthquake motions (2% probability of being exceeded in 50 years). A two-step approach is followed because the displacement limitations of the shake table do not permit full-scale experiments. First, shake table tests are conducted on quarter-scale wooden block models of the equipment. The results are used to validate the commercially available dynamic simulation software Working Model 2D. Working Model is then used to compute the response of the full-scale freestanding equipment when subjected to strong, 2% in 50 years hazard motions. The response is dominated by sliding, with sliding displacements reaching up to 70 cm. A physically motivated dimensionless intensity measure and the associated engineering demand parameter are identified with the help of dimensional analysis, and the results of the numerical simulations are used to obtain a relationship between the two that leads to ready-to-use fragility curves.  相似文献   

14.
This paper presents the results of an experimental work in order to evaluate the performance of a novel proposed retrofitting technique on a typical dome‐roof adobe building by shaking table tests. For this purpose, two specimens, scaled 2:3, were subjected to a total of nine shaking table tests. The unretrofitted specimen, constructed by common practice, is designed to evaluate seismic performance and vulnerability of dome‐roof adobe houses. The retrofitted specimen, exactly duplicating the first specimen, is retrofitted based on the results obtained from unretrofitted specimen tests, and the improvement in seismic behavior of the structure is investigated. Zarand earthquake (2005) Chatrood Station is selected as the input ground motion that was applied consecutively at 25, 100, 125, 150 and 175% of the design‐level excitation. At 125% excitation level, the roof of the unretofitted specimen collapsed due to the walls' out‐of‐plane action and imbalanced forces. The retrofitting elements consist of eight horizontal steel rods drilled into the walls, passed through the specimen and bolted on the opposite wall surfaces. To improve walls in‐plane seismic performance, welded steel mesh without using mortar, covered less than half area of walls on the external face of the walls, is used. In addition to strain gauges for recording steel rod responses, several instrumentations including acceleration and displacement transducers are implemented to capture response time histories of different parts of the specimens. The corresponding full‐scaled retrofitted prototype tolerated peak acceleration of 0.62 g almost without any serious damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the seismic performance of a functional traction elevator as part of a full‐scale five‐story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base and subsequently while it was fixed to the shake table platen. In addition, low‐amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations because of impact during these tests, the use of well‐restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high‐intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Pounding between adjacent structures during earthquakes may significantly modify their response in terms of forces and displacements. In addition, it has a considerable influence on acceleration and thus on floor response spectra. Therefore, pounding may be unfavorable to the response of equipment. Despite extensive research in this field, the effects of pounding on structures are difficult to quantify accurately. This article presents results of shake table tests carried out on two representative scale adjacent structures subject to pounding. Besides investigating the effects of the gap between structures and the excitation signal, this study examines also the effect of tying the two structures together by means of rigid links to suppress pounding. The results of the experimental campaign are then compared with those of numerical simulations. Analyses and experimental results show good agreement regarding both impact forces and interstorey drifts.  相似文献   

17.
A series of full‐scale shaking table tests are conducted using the E‐Defense shaking table facility on a base‐isolated four‐story RC hospital structure. A variety of furniture items, medical appliances, and service utilities are placed on the hospital specimen in as realistic a manner as possible. Four ground motions are adopted, including recorded near‐fault ground motions and synthesized long‐period, long‐duration ground motions. The test results show that the base‐isolated system performed very effectively against near‐fault ground motions due to significant reduction in the floor acceleration response, and operability and functionality of the hospital service is improved significantly as compared with the case observed for the corresponding base‐fixed system. Against the long‐period ground motion, however, the hospital service is difficult to maintain, primarily because of the significant motion of furniture items and medical appliances supported by casters. Resonance accentuated large displacements and velocities on the floors of the base‐isolated system, which causes such furniture items and medical appliances to slide, sometimes more than 3 m, resulting in occasional collision with other furnitures or against the surrounding partition walls. It is notable that a key to maintaining the function of the medical facilities is to securely lock the casters of furniture and medical appliances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
<正>This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground.The soil profile,contained in a large-scale laminar shear box,consisted of a horizontally saturated sand layer overlaid with a silty clay layer,with the simulated low-cap pile groups embedded.The container was excited in three E1 Centra earthquake events of different levels.Test results indicate that excessive pore pressure(EPP) during slight shaking only slightly accumulated,and the accumulation mainly occurred during strong shaking.The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased.The acceleration response of the sand was remarkably influenced by soil liquefaction.As soil liquefaction occurred,the peak sand displacement gradually lagged behind the input acceleration;meanwhile,the sand displacement exhibited an increasing effect on the bending moment of the pile,and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top.A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events.It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.  相似文献   

19.
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A new low-cost seismic isolation system based on spring tube bracings has been proposed and studied at the Structural and Earthquake Engineering Laboratory of Istanbul Technical University. Multiple compression-type springs are positioned in a special cylindrical tube to obtain a symmetrical response in tension and compression-type axial loading. An isolation floor, which consists of pin-ended steel columns and spring tube bracings, is constructed at the foundation level or any intermediate level of the building. An experimental campaign with three stages was completed to evaluate the capability of the system. First, the behavior of the spring tubes subjected to axial displacement reversals with varying frequencies was determined. In the second phase, the isolation floor was assessed in the quasi-static tests. Finally, a ¼ scaled 3D steel frame was tested on the shake table using actual acceleration records. The transmitted acceleration to the floor levels is greatly diminished because of the isolation story, which effects longer period and higher damping. There are no stability and self-centering problems in the isolation floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号