首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.  相似文献   

2.
云南澜沧老厂是三江成矿带南段最重要的铅锌铜钼多金属矿床之一.根据不同的赋矿特征、含矿岩性、矿石构造及成矿元素将澜沧老厂多金属矿床矿石类型系统地划分为铅锌硫化矿石、铅锌氧化矿石、颗粒状含铜黄铁矿石、块状含铜黄铁矿石、夕卡岩型矿石及斑岩型钼矿石6种类型.矿体产状、微量元素地球化学、年代学证据均表明铅锌硫化矿石、颗粒状含铜黄铁矿石及块状含铜黄铁矿石为火山喷流沉积型成因(VMS型),而铅锌氧化矿石、夕卡岩型矿石及斑岩型钼矿石为斑岩热液型成因.其中,铅锌硫化矿石、颗粒状含铜黄铁矿石及块状含铜黄铁矿石的主控矿因素为地层;铅锌氧化矿石为构造;夕卡岩型矿石为岩性;斑岩型钼矿石为岩体.  相似文献   

3.
云南澜沧老厂是三江成矿带南段最重要的铅锌铜钼多金属矿床之一.根据不同的赋矿特征、含矿岩性、矿石构造及成矿元素将澜沧老厂多金属矿床矿石类型系统地划分为铅锌硫化矿石、铅锌氧化矿石、颗粒状含铜黄铁矿石、块状含铜黄铁矿石、夕卡岩型矿石及斑岩型钼矿石6种类型.矿体产状、微量元素地球化学、年代学证据均表明铅锌硫化矿石、颗粒状含铜黄铁矿石及块状含铜黄铁矿石为火山喷流沉积型成因(VMS型),而铅锌氧化矿石、夕卡岩型矿石及斑岩型钼矿石为斑岩热液型成因.其中,铅锌硫化矿石、颗粒状含铜黄铁矿石及块状含铜黄铁矿石的主控矿因素为地层;铅锌氧化矿石为构造;夕卡岩型矿石为岩性;斑岩型钼矿石为岩体.  相似文献   

4.
This paper discusses the enrichment and depletion regularities for porphyry copper-molybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.  相似文献   

5.
地气测量在北祁连盆地区找矿突破及其意义   总被引:19,自引:0,他引:19  
北祁连地区是我国最重要的块状硫化物床成矿省之一,虽然该区分布有我国最大的块状硫化物矿床——白银矿田,以及200多处中小型矿床及矿(化)点,但除白银矿田外,多年来在找大矿方面未能突破。原因在于缺乏必要的手段,找矿勘探工作仅限于盆地周边的出露区。近几年,地气测量在黑河盆地的红层覆盖区先后发现了赖都滩和白柳沟矿体,不仅说明地气测量方法有效,而且说明黑河盆地具有寻找大型白银式多金属矿床的潜力。建议采用地气法对整个盆地进行系统勘查,并结合其它方法,优选出最佳的找矿靶区。作者认为,本区找矿突破可为整个北祁连地区其他盆地寻找块状硫化物矿床指出新的找矿方向,将找矿重点转到盆地区,以实现我国块状硫化物矿床勘查的全面突破。  相似文献   

6.
The southwestern Sabzevar basin is the north of Central Iranian Microcontinent hosts abundant mineral deposits, including exhalative Mn mineralization and Cu-Zn volcanogenic massive sulfide (VMS) deposits. Amongst them, the Nudeh Besshi-type Cu–Zn volcanogenic massive sulfide (VMS) deposit is hosted within the lower part of a Late Cretaceous volcano-sedimentary sequence composed of alkali olivine basalt flows and tuffaceous silty sandstone. Based on investigations into the ore geometry, mineralogy, and texture, we recognized three different ore facies: (1) a stockwork of sulfide-bearing quartz veins cutting across the footwall volcano-sedimentary rocks and representing the stringer zone; (2) a massive ore type, displaying replacement texture with pyrite, chalcopyrite, sphalerite, friedrichite, and minor magnetite; and (3) a bedded ore type, with laminated to disseminated pyrite and chalcopyrite. EPMA studies indicate a distinctive minor element distribution between the different ore types of the Nudeh deposit. The Fe content in the sphalerite ranges from 0.65–1.80?wt.%, indicating the Fe-poor nature of the sphalerite. However, the Cd content in sphalerite ranged between 0.164–0.278?wt.%. According to the mineral compositions, Zn, Se, and Ag are found in bornite as minor elements. In the bedded ore facies, the pyrite contains higher levels of Se (up to 0.35?wt.%). The Zn content in the friedrichite in all of the ore samples is low. The Co/Ni ratios in pyrite from the Nudeh ore are lower than those of most magmatic deposits, but are similar to those from volcanogenic deposits, and hence support the proposed hydrothermal origin of the deposit. Two generations of quartz, Q1 and Q2 in the stockwork veins, contain primary fluid inclusions and these contain two phases (liquid and vapor). The lack of vapor-rich inclusions or variable liquid/vapor ratios indicate that the fluids did not boil at the site of trapping. Salinity for both Q1 and Q2 fluid inclusions ranges between 2.2–6.8?wt.% eq. NaCl. Homogenization temperatures for inclusions in the Q1 and Q2 veins average at about 296?°C and are similar to the temperatures of hydrothermal fluids discharged through vents in many modern seafloor VMS deposit. The Nudeh Besshi-type VMS deposit appears to have formed on the seafloor and based on the salinity and temperature constraints from the underlying stockwork, a buoyancy plume model is proposed as a mechanism for precipitation.  相似文献   

7.
北祁连山火山成因块状硫化物矿床的金属来源研究   总被引:2,自引:0,他引:2  
研究了北祁连山造山带火山成因块状硫化物矿床(VMS)类型、金属来源与容矿围岩、火山岩类型及其构造环境的关系。结果表明,容矿岩石和地壳性质是控制矿床类型和金属来源的主要因素。多金属黑矿型矿床主要赋存于硅名质陆壳边缘裂陷带双峰火山岩系的酸性火山岩中,成矿元素源于深部长英质岩石,铜型矿床产于洋壳基性火山岩中,成矿元素源于深部镁铁质岩石。中寒武统双峰火山岩所赋存的多金属VMS矿床多、规模大,是主要含矿矿岩  相似文献   

8.
The Ortaklar VMS deposit is hosted in the Koçali Complex consisting of basalts and deep sea pelagic sediments, which formed by rifting and continental break-up of the southern Neotethyan in Late Triassic. The basalts are of NMORB-type without notable crustal contamination. From the surface to depth, the Ortaklar deposit consists of a gossan zone, a thick massive ore zone and a poorly developed stockwork zone. Primary mineralisation is characterised by distinctive facies including sulphide breccias (proximal), graded beds (distal), stockworks and chimney fragments. Ore mineral abundances decrease in the order of pyrite, magnetite, chalcopyrite, and sphalerite. Two distinct phases of mineralisation, massive magnetite and massive sulphide, are present in the Ortaklar deposit. Textural evidence (e.g., magnetite replacing sulphides) and the spatial relationships with the host rocks indicate that magnetite and sulphide minerals were generated in different stages. The transition from sulphide to magnetite mineralisation is interpreted to relate to variation in H2S content of ore fluids. The 1st stage massive sulphide ore might have formed by early hydrothermal fluids rich in Fe and H2S. The 2nd stage massive magnetite might have formed by later neutral hydrothermal fluids rich in Fe but poor in H2S, replacing the pre-existing sulphide ore.The alteration patterns, mineral paragenesis, lithological features (massive ore-stockwork ore-gossan) of the Ortaklar deposit together with its trace elements, Cu-Pb-Zn-Au-Ag and REE signatures are all consistent with a Cyprus-type VMS system. The δ34S values in pyrite and chalcopyrite samples range from 2.6 to 5.7‰, indicating that the hydrothermal fluids were associated with sub-seafloor igneous activity, typical of Cyprus-type VMS deposits. However, magnetite formed later than sulphide minerals in the Ortaklar deposit, contrasting with typical Cyprus-type VMS deposits where magnetite generally occurs in lower sections. Consequently, although the Ortaklar deposit generally conforms to Cyprus-type deposits, it is distinguished from them by its late stage and high magnetite concentration. Thus, the Ortaklar deposit is thought to be an exceptional and perhaps unique Cyprus-type VMS deposit.  相似文献   

9.
Abstract. The Takara volcanogenic massive sulfide (VMS) deposit occurs in Miocene formation of the Misaka Mountain, the South Fossa Magna region, central Japan. The tectonic setting of the Misaka Mountain is reconstructed to be a part of the paleo Izu-Ogasawara arc which collided with the Honshu arc and to form accreted body in the present position. The Takara deposit, therefore, is considered to have formed in the paleo Izu-Ogasawara arc.
The ores from the Takara deposit are classified into pyrite-type ore, chalcopyrite-type ore, and sphalerite-type ore on the basis of chemical composition and their mineral assemblages. Some pyrite-type ores are characterized by their high Au content. The Au content is hardly recognized in the chalcopyrite-type and sphalerite-type ores.
The ores from the Takara deposit have intermediate bulk chemical composition between those from the Besshi-type deposits and the Kuroko-type deposits that are two representative VMS deposits. However, the bulk chemical composition is closer to that from the Kuroko-type deposits. And moreover, chemical composition of tetrahedrite-tennantite series minerals (tetrahedrite) is similar to that from the Kuroko-type deposits. The bulk chemical composition (Cu, Zn, Co, Pb, and As contents) of ores is affected by the chemical composition of volcanic rocks associated with VMS deposits.  相似文献   

10.
陕西镇安二台子金铜矿床表生地球化学异常特征   总被引:4,自引:0,他引:4  
为查明二台子金铜矿床的表生地球化学异常特征,采用土壤地球化学综合剖面的研究方法,对其进行了详细的分析研究。结果表明,区域上二台子金铜矿床的表生地球化学异常元素组合为Au-As-Sb-Hg-Cu,并表现出与原生异常在组合,含量等特征上的一致性。矿区内金、铜等成矿及指示元素在土壤中的不同层位产生了一定程度的富集。土壤和岩石样品的Au,As,Hg,Cu均密切相关。该矿床上覆的土壤及氧化矿石中的金主要以自然金相,水溶相和硫化物相形式存在,金的这种赋存相态特征可以作为寻找掩埋和隐伏金矿床的标志。  相似文献   

11.
There may be many as-yet-undiscovered porphyry copper deposits that exist as blind deposits deep within exposed rock bodies. The Kalamazoo porphyry copper-molybdenum deposit is a blind deposit present at depths up to at least 1,000 m (about 3,200 ft) that contains zoning features common to many of the known porphyry copper deposits found in western North and South America.As the preliminary phase in a geochemical study of the Kalamazoo deposit, whole-rock samples of core and cuttings from two drill holes have been analyzed for 60 different elements. Each hole represents a different major rock unit and each has penetrated completely through all the existing alteration zones and the ore zone.Plots of concentration vs. depth for 17 selected elements show distinct high- or low-concentration zones that are spatially related to the ore zone. For most of the ore-related elements no significant correlation with the two lithologies is apparent. The spatial distribution and abundance of elements such as Co, Cu, S, Se, Mn, Tl, Rb, Zn, B, and Li may be useful in determining the direction for exploration to proceed to locate a blind deposit. Trace element studies should be valuable in evaluating areas containing extensive outcrops of rocks with disseminated pyrite. Elemental zoning should be at least as useful as alteration-mineralization zoning for evaluating rock bodies thought to contain blind deposits similar to the Kalamazoo deposit.  相似文献   

12.
岔路口斑岩Mo-Zn-Pb矿床位于大兴安岭北段,是近年来新发现的超大型斑岩-热液脉状Mo-Zn-Pb成矿系统,脉状Zn-Pb矿化直接叠置在斑岩Mo矿化顶部。本文挑选岔路口斑岩型矿化及热液脉型矿化的黄铁矿、闪锌矿、方铅矿,通过EMPA、ICP-MS等多种方法分析硫化物的主微量元素组成,发现岔路口各阶段硫化物均富集Mo元素,相比于斑岩型矿化各阶段中的黄铁矿,Zn、Pb、Mn、Cd、Ga、Ag、Bi等元素在铅锌矿阶段内相对富集;相比于过渡阶段,铅锌阶段闪锌矿中Mo、Co元素及方铅矿中的Bi、Cd和Ag元素含量下降。微量元素在不同阶段内的变化可能是流体降温和天水混合的结果。黄铁矿的稀土总量与成矿岩体最接近,且与成矿岩体和围岩有相似的稀土配分模式,并有较明显的Eu负异常;黄铁矿宽广的Y/Ho比值(25.0~39.0)与成矿岩体的Y/Ho比值范围(27.4~38.7)最接近,同时包括了围岩相对较窄的Y/Ho比值(25.7~31.3),这表明成矿物质主要与成矿岩体同源,可能加入了一定量的围岩物质,岔路口硫化物富Mo的特征受控于深部斑岩Mo矿化岩浆-热液系统。对比东秦岭-大别W-Mo-Pb-Zn矿集区的远源热液脉状Pb-Zn矿床,岔路口浅部近源脉状矿化中的黄铁矿具有更高含量Mo/Ag-Bi/Sb比值和Mo/Pb-Sn/Sb比值,因此浅部硫化物的高Mo含量以及黄铁矿中相关元素比值的高值,可为脉状Zn-Pb矿化附近隐伏斑岩钼矿化的勘探提供新线索。此外,与其他热液脉状和斑岩型矿床相比,岔路口矿床硫化物更富集中高温元素;且综合分析多类矿床的硫化物的微量元素后,本文还初步查明不同矿床类型硫化物富集的微量元素,这一尝试可为矿床成因的判断提供新的思路。  相似文献   

13.
林焕华 《物探与化探》1991,15(3):225-236
为了发挥勘查地球化学在找矿中的优势,运用类似于研究脉状热液型金属矿床地球化学特征的方法,对浙江省龙泉县八都萤石矿床进行了地球化学找矿方法的试验研究,目的是:(1),了解该类型萤石矿床在成矿作用影响下,赋存于围岩、水系沉积物及水介质中的地球化学特征;(2),了解该类型矿床的原生、次生异常特征.以期在未知区对该类矿床的找矿评价工作时提供一些地球化学方面的依据.通过研究表明:形成萤石矿床原生晕元素有:第一组F、As、Sb、Ca、Ag、Mo、Y;第二组Na、Mg、Al、K、Ti、Ba、P、Nb、Pb等.其中第一组为正异常元素(简称正晕元素);第二组为负异常元素(简称负晕元素).所有以上元素的原生晕都呈现带状特征.正晕元素的轴向分带由上到下为:F-Ca-As-Sb-Y-Ag-Mo.水系沉积物及重砂测量结果表明:在已剥蚀的萤石矿床附近的水系中,可以形成萤石重砂异常及F元素异常.萤石可做为找矿的指示矿物;F可做为找矿的指示元素.矿区水文地球化学研究结果表明:在已知萤石矿田范围内,可出现F-、Ca3+的水化学异常,该异常对于矿体富集部位及矿带的延伸方向有一定的指示意义.  相似文献   

14.
Due to the combined influences such as ore-forming temperature, fluid and metal sources, sphalerite tends to incorporate diverse contents of trace elements during the formation of different types of Lead-zinc (Pb-Zn) deposits. Therefore, trace elements in sphalerite have long been utilized to distinguish Pb-Zn deposit types. However, previous discriminant diagrams usually contain two or three dimensions, which are limited to revealing the complicated interrelations between trace elements of sphalerite and the types of Pb-Zn deposits. In this study, we aim to prove that the sphalerite trace elements can be used to classify the Pb-Zn deposit types and extract key factors from sphalerite trace elements that can discriminate Pb-Zn deposit types using machine learning algorithms. A dataset of nearly 3600 sphalerite spot analyses from 95 Pb-Zn deposits worldwide determined by LA-ICP-MS was compiled from peer-reviewed publications, containing 12 elements (Mn, Fe, Co, Cu, Ga, Ge, Ag, Cd, In, Sn, Sb, and Pb) from 5 types, including Sedimentary Exhalative (SEDEX), Mississippi Valley Type (MVT), Volcanic Massive Sulfide (VMS), skarn, and epithermal deposits. Random Forests (RF) is applied to the data processing and the results show that trace elements of sphalerite can successfully discriminate different types of Pb-Zn deposits except for VMS deposits, most of which are falsely distinguished as skarn and epithermal types. To further discriminate VMS deposits, future studies could focus on enlarging the capacity of VMS deposits in datasets and applying other geological factors along with sphalerite trace elements when constructing the classification model. RF’s feature importance and permutation feature importance were adopted to evaluate the element significance for classification. Besides, a visualized tool, t-distributed stochastic neighbor embedding (t-SNE), was used to verify the results of both classification and evaluation. The results presented here show that Mn, Co, and Ge display significant impacts on classification of Pb-Zn deposits and In, Ga, Sn, Cd, and Fe also have relatively important effects compared to the rest elements, confirming that Pb-Zn deposits discrimination is mainly controlled by multi-elements in sphalerite. Our study hence shows that machine learning algorithm can provide new insights into conventional geochemical analyses, inspiring future research on constructing classification models of mineral deposits using mineral geochemistry data.  相似文献   

15.
火山热液型铅锌矿床岩石地球化学特征及预测指标   总被引:2,自引:1,他引:1  
火山热液型铅锌矿床赋矿围岩、后期脉岩和蚀变岩石中成矿元素铅锌银含量高,矿体元素组合复杂,原生异常发育,并存在着原生分带现象。矿体前缘元素为I、Hg、As、Sb、B、Ba;近矿指示元素是Pb、Zn、Ag、Au、Cd、Mn、Cu;尾部或矿下指示元素为Cu、Mo、W、Sn。根据矿床指示元素的分布规律和原生晕的分带性,研制了判别矿床剥蚀程度和评价异常的地球化学指标,建立了该类矿床的地球化学找矿预测标志。  相似文献   

16.
The presence of geochemical anomalies, defining haloes around hydrothermal ore deposits, can be used to vector towards mineralization, or identify ore bodies buried at depth. Several important types of ore deposits, including skarn deposits, are often hosted within carbonate-rich sedimentary rocks. Identifying anomalous trace-element concentrations in carbonate rocks is complicated by variable lithology (i.e. siliciclastic component) and volume loss during hydrothermal alteration. In this study of the world-class Antamina skarn deposit in Peru, we use the ratio of metals:immobile elements (e.g. La, Al2O3) to differentiate genuine and false geochemical anomalies in limestones and marbles surrounding the skarn deposit. Unaltered limestones are used to define threshold values for metal:immobile element ratios (through use of the median value ± 2 median absolute deviations). Genuine anomalies are identified when metal concentrations exceed those predicted using median + 2 median absolute deviations. In addition, comparison of “four acid” and lithium-borate fusion analytical techniques reveals that the lower cost four-acid techniques give reliable results. Our approach can be used to identify geochemical anomalies and halos related to hydrothermal alteration of carbonate-rich rocks, which have direct application to skarn deposits.  相似文献   

17.
珊瑚钨锡矿床地表岩石和土壤以及近矿围岩中均有明显的热释卤素地球化学异常,其卤素谱线具有多峰特征,卤素元素组合等,均反映了钨锡矿床的不同类型.在综合研究热释卤素地球化学异常特征基础上,建立了珊瑚钨锡矿床热释卤素地球化学异常模式,并对交椅岭地段进行了成矿预测,证明热释卤素法找矿是有效的.  相似文献   

18.
徐善法  王玮 《地学前缘》2012,19(3):84-92
以长江中下游1∶20万铜区域地球化学数据为基础,研究了铜元素地球化学异常特征,认为不同尺度的地球化学异常图具有不同的研究意义:(1)1∶20万地球化学异常可以圈定矿床异常,用于大型矿床预测。研究区内13个大型矿床中有12个落在具有三层套合结构的地球化学异常中,已知矿床储量与异常面金属量、异常面积之间的相关系数分别为0.94、0.95,显示区域地球化学异常规模与储量之间的较好相关性。(2)1∶50万地球化学异常可以圈定矿区异常,用于在成矿带中预测有利成矿区。(3)1∶100万地球化学异常可以圈定大型矿集区或成矿带,用于矿集区预测。如果把研究区内面积大于1 000km2且含有3个以上已知矿床的异常作为矿集区的话,则长江中下游存在3个大型矿集区:马鞍山—南京矿集区、九江—瑞昌—大冶矿集区和德兴—黄山—安庆—铜陵矿集区(实际上包含德兴和铜陵2个矿集区)。大型矿床多产于多层套合的地球化学异常中,大型矿集区所形成的异常具有至少3层套合结构,浓集中心与大型矿床存在对应关系,这些规律的发现为在不同成矿域预测新的大型矿集区提供了重要地球化学标志。  相似文献   

19.
李建亭 《地质与勘探》2022,58(4):836-845
在风化壳覆盖区应用传统化探方法和矿物地球化学找矿方法开展斑岩型矿床深部找矿存在一定制约。土壤微细粒分离测量技术是一种可应用于覆盖区找矿的穿透性地球化学勘查技术,在干旱地区已取得良好的应用效果,亟需开展多景观、多矿种应用试验。基于此,本文选择为红土风化壳覆盖的福建省罗卜岭斑岩铜钼矿为研究区,开展风化壳土壤微细粒分离测量技术有效性实验。结果显示,与不含矿酸性岩体风化壳相比,研究区明显富集铜钼矿成矿及伴生元素,尤其是Mo、Cu、Au显著富集,与此同时,含矿岩体风化壳中元素变异系数较低,符合斑岩型矿床元素含量富集系数高、变异系数低的典型特征。元素空间分布特征与矿化蚀变、断裂构造、地形演化密切相关。Cu-Mo异常可以圈定矿化中心蚀变带,V、Hg则在外蚀变带富集。Cu与Mo在研究区西北部的分异指示了紫金山矿田由SE向NW主成矿作用由Cu-Mo演变为Cu-Au。元素剖面分布特征进一步验证了成矿蚀变、地形演化对元素分布的控制作用。地形演化决定了蚀变带在地表的分布,进而控制元素的分布。罗卜岭铜钼矿体呈马鞍状分布于古背斜两翼,在后期风化剥蚀作用下,背斜核部演化为负地形,使得中心蚀变带接近出露地表,表现为Cu的正异常;古背斜两翼现今为正地形,矿体埋深较大,前缘晕元素Hg表现为正异常。因子分析结果很好地展示了元素的组合与分异特征。总体上,可以根据Cu-Mo异常判断矿体中心位置,根据Hg判断矿体埋深,根据Sn、V、Cr等识别花岗闪长斑岩体边界。本研究系统证明微细粒土壤测量在风化壳覆盖区探测隐伏斑岩铜钼矿的有效性。  相似文献   

20.
The tectono-geochemistry method as a lithogeochemical exploration tool is a process centric approach based on the premise that element migration and concentration within and adjacent to geological structures are controlled by large-scale dynamic earth processes that operate on a variety of scales to focus mass and energy flux. Here we present a case study of the Gaosong tin-polymetallic deposit, Gejiu district, SW China, illustrating how the tectono-geochemistry method can be applied to mineral prospectivity mapping. As a first step, 2216 fault rock samples collected within the Geiju district were assayed followed by a detailed examination of the assay results by means of factor analysis and multifractal singularity mapping. The main aims of these analyses were to (1) statistically explore the data with respect to specific element concentrations, associations and geochemical patterns by which the fault rock samples can be grouped, (2) better characterize the samples in terms of whether or not the rocks recorded any evidence for hydrothermal mineralization processes, and (3) identify any geochemical anomalies that may present vectors to buried ore. The results illustrate that element distribution patterns are greatly influenced by fault permeability and that NE-SW-striking faults are the most favorable in terms of concentration of ore elements. Factor analysis greatly assisted the identification and interpretation of, for example, element associations, and geochemical zonation patterns genetically related to intrusions. Recognition of singularities was of particular importance with respect to identifying and delineating primary fault tectono-geochemical anomalies that may be caused by buried ore. Of particular interest are low singularity values as these correspond with positive geochemical anomalies over known ore deposits in the Gejiu district. Anomalies delineated by local singularity exponents may represent undiscovered ore and, thus, warrant further exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号