首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
应用常规观测资料、污染物浓度资料和NCEP 1°×1°再分析资料从环流形势、边界层特征和扩散条件等方面对2013年和2016年两次持续性霾重污染过程进行对比分析。结果表明:①2013年过程和2016年过程在500hPa高空上分别为阻塞环流型和纬向环流型,关中地区受偏西气流影响、地面气压场较弱、大气层结均比较稳定;②2013年过程西安贴地逆温层顶高度低、相对湿度大、气温低、不利于大气垂直湍流交换,污染物容易堆积,这也是2013年过程比2016年过程重污染持续时间长、污染浓度高的原因之一;③两次过程西安平均风速均小于2m/s,具有显著的低风速特征,且东北风为其主导风向。持续东北风引起上游污染传输和低风速导致的本地污染累积是造成2013年过程污染浓度更高的重要因素;④2013年过程结束是受强冷空气影响,来自高空的干洁大气下沉到地面,置换了边界层的污染空气,使空气质量得到根本改善;而2016年过程是受高原槽东移影响,雨雪天气的沉降作用使得霾消散。  相似文献   

2.
利用常规观测资料、地面自动站资料及NCEP 1°×1°分析资料,结合边界层散度场的诊断分析,探讨了北京2013年1月严重霾天气过程的环流特征和气象成因。主要结论如下: 1)500 hPa为偏西气流,冷空气活动弱,无明显冷平流,对流层低层850 hPa及其以下风速小、冷空气活动偏弱,是霾天气的显著特征。2)边界层存在逆温和大气层结稳定是霾发生的另一重要条件,逆温层不仅可出现在边界层,有时也出现在对流层低层850 hPa 附近。3)边界层存在弱辐合中心是霾形成的重要条件,特别是在区域性污染的情况下,边界层辐合可使霾因区域性污染物的输送汇聚而加重。4)偏东风对霾形成和加重具有重要作用,主要表现为风速一般较小,在边界层形成暖平流结构,易形成逆温,增加边界层相对湿度和维持边界层辐合,配合北京西部山地特殊地形,使污染物积累,最终通过增大污染物浓度及增大边界层相对湿度,造成大气水平能见度严重降低。5)1月10—14日霾天气过程主要是在边界层有弱辐合而相对湿度较低的条件下形成的,而27—31日过程主要发生在边界层相对湿度较高的条件下。  相似文献   

3.
徐州持续性霾过程的季节特征分析   总被引:3,自引:3,他引:0  
吕翔  刘端阳  李冰峰  田园  段培法  孙建印 《气象》2015,41(9):1134-1143
利用常规气象观测资料、NCEP再分析资料及污染物浓度小时资料,从天气形势、地面气象要素特征、污染物浓度变化、霾形成及维持的机制等方面,分析了徐州2013年持续性霾过程的季节特征。结果表明:秋、冬季中高层为西到西北气流,低层暖脊,地面为高压后部或鞍型场;春、夏季在中高层西南风、低层高压后部偏南气流、地面风场不是很弱的情况下出现持续性霾。秋、冬季霾日夜间风速接近静风,白天风速较夜间略大,风向以偏北和偏东居多;春、夏风向、风速相对稳定,风速维持2~3 m·s-1,风向多为东到东南。秋、冬季出现霾时层结稳定,具有明显的贴地层逆温结构,逆温层顶较低,春季逆温层顶略高于秋、冬季,而夏季出现霾时可以是不稳定的层结,低层也不具备明显逆温特征。冬、夏季霾区上空多为微弱的上升运动,高度不高,其上为下沉气流;春、秋季夜间到早晨霾区上空多为下沉气流。  相似文献   

4.
以2015年1月25—26日宁波地区重度霾污染过程为例,利用常规地面站资料、颗粒物观测数据、M ODIS产品、气溶胶激光雷达数据、探空数据及轨迹模拟模式,从气象条件和污染源输送分析了此次污染过程的形成原因。结果表明,污染过程颗粒物主要集中在近地面800 m以下,北方弱冷空气南下携带的污染物近距离输送造成宁波地区颗粒物浓度迅速增加。中低层旺盛的西南暖湿气流使该地区维持高湿,空气中大量水汽包裹颗粒物下沉,造成污染加剧。逆温和高湿的气象条件,不利于污染物的扩散,导致颗粒物浓度积累增长。污染过程结束于北方强冷空气南下时,此时风速增加,扩散条件转好。  相似文献   

5.
利用全国664站1961—2012年逐日霾观测资料、降水量、平均风速和最大风速资料,分析中国霾日数变化特征及其气候成因。结果表明:我国年霾日数分布呈明显东多西少特征,中东部大部地区年霾日数在5~30 d,部分地区超过30 d,西部地区基本在5 d以下。霾日数主要集中在冬半年,冬季最多,秋季和春季次之,夏季最少,12月是霾日数最多的月份,约占全年霾日数的2成。我国中东部地区冬半年平均霾日数呈显著的增加趋势(1.7 d/10a),霾日数显著增加时段主要在1960年代、1970年代和21世纪初,在1970年代初和21世纪初发生了明显均值突变。从区域分布来看,华南、长江中下游、华北等地霾日数呈增加趋势,而东北、西北东部、西南东部霾日数呈减少趋势。持续性霾过程增加,持续时间越长的霾过程比持续时间短的霾过程增加更为明显。不利的气候条件加剧了霾的出现。霾日数与降水日数在中东部地区基本以负相关为主,中东部冬半年降水日数呈减少趋势(-4 d/10a),表明降水日数的减少导致大气对污染物的沉降能力减弱。另一方面,霾日数与平均风速和大风日数以负相关为主,而与静风日数则以正相关为主,冬半年平均风速和大风日数减小,静风日数增加,表明风速减小导致空气中污染物不易扩散,从而更易形成霾天气。  相似文献   

6.
珠江三角洲霾天气的近地层输送条件研究   总被引:68,自引:4,他引:64       下载免费PDF全文
近年来, 珠江三角洲地区气溶胶污染日趋严重, 霾天气造成能见度恶化和空气质量下降。近地层输送条件即地面流场与大气污染物稀释扩散密切相关。利用2004—2005年广东省466个地面自动气象站资料、广州观象台常规气象资料、珠江三角洲大气成分站网器测能见度资料、珠江三角洲城市环境监测站网的PM10浓度资料等, 使用矢量和分析方法, 分析珠江三角洲近地层风及其对严重霾天气过程和清洁对照过程的影响。结果表明: 2004年霾天气高发季节, 东亚纬向环流比2005年同期显著, 纬向环流不显著的年份, 气流南北交换显著, 冷空气跨越南岭、到达珠江三角洲的机会比较大, 伴随冷空气的大风等天气有利于污染物扩散; 纬向环流显著的年份, 冷空气跨越南岭、到达珠江三角洲的机会比较小, 污染物易于堆积。珠江三角洲霾天气具有区域性特征, 旱季出现最多, 雨季出现最少。严重霾天气过程出现在每年12月至次年4月, 清洁对照过程出现在台风直接影响或冷空气活动频繁的季节。与2004年相比, 2005年的静风频率较低, 且旱季风速较大, 不利于霾天气的形成。矢量和分析表明:区域霾天气过程与区域内静小风过程, 即出现气流停滞区有密切联系, 清洁对照过程与强平流输送有关。  相似文献   

7.
广西霾天气系统分型   总被引:1,自引:0,他引:1  
利用2009—2013年NCEP再分析资料和广西14个地级市的历史气象资料,通过天气学方法对广西233个霾日对应的天气系统进行了分类,将形成广西霾日的天气系统分成冷高压脊控制型、入海高压后部型、低压槽型、均压场型、冷锋前部型、副高控制型、静止锋暖区型和热带气旋外围型共8种类型,研究了各类型天气系统的特点及其在广西霾形成中的作用。结果表明:冷高压脊控制型、入海高压后部型、均压场型和低压槽型是4种主要的环流型,造成的广西霾日较多,静止锋暖区型和热带气旋外围型造成的霾日较少;冷高压脊控制型和副高控制型的霾过程持续时间比较长,冷锋前部型的霾过程持续时间最短;地面风速较小,中低空为下沉气流是出现霾日时各类天气型的共同特征。  相似文献   

8.
石家庄大气污染与沙尘天气的关系分析   总被引:3,自引:1,他引:2       下载免费PDF全文
利用2002—2006年石家庄市逐时气象资料和环境监测资料,分析了8次典型沙尘天气对空气污染的影响。结果表明:沙尘天气的首要污染物均是可吸入颗粒物,春季中度以上污染日平均出现在沙尘日当日或次日;造成石家庄沙尘天气污染源分外来型、本地型以及二者共同影响型3种;其中,本地型沙尘污染多受冷锋影响,PM10浓度与风速呈正相关。而外来型污染多处于弱气压场控制,PM10浓度与南风呈反相关,而当风向转偏北时则利于污染物积累。  相似文献   

9.
利用2010年12月至2014年5月宁波近海凉帽山370m高塔气象梯度风观测和浙江北部沿海自动气象站测风资料,对浙江北部近海风速垂直廓线进行分析,结果发现:受地形影响,偏南、偏北风时塔基风速一般比上一层风速大。不同天气系统影响下近地边界层风廓线不同,南风型320m以下风速基本遵从对数律。热带气旋影响型和北风型时风廓线可分为3段,常通量层内基本满足对数律,该层向上一段高度热带气旋影响型风速变化不大,北风型反而减小,再往上风速又继续增大。北风型风廓线的这种3段结构表现比热带气旋影响型更为清楚,约80~109m风速出现相对极大值,200~250m间存在风速极小值。满足对数律的近地边界层内小风比大风具有更好的拟合优度。浙江北部沿海自动气象站测风资料不同风型统计分析与高塔风廓线表现基本一致。  相似文献   

10.
利用大气观测、探测及污染物探测资料、NCEP再分析资料和GDAS资料,对2013年10月26—29日一次持续性重霾天气过程中的气象要素和气溶胶演变特征进行分析。结果表明:本次持续性霾天气过程中,临沂地区PM_(2.5)污染严重,大气中PM_(2.5)的小时平均浓度工业区城区郊区,污染最严重时分别为365,344,284μg·m~(-3);较小的地面平均风速及PM_(2.5)浓度的稳定上升和较低的地面湿度为本次霾天气过程的形成和发展提供了有利条件;当临沂地区以南风或西南风为主时,市区霾天气加重,上游空气污染具有平流输送特征。贴地逆温层的形成,导致污染物在低空不断积累,造成污染浓度的持续升高。地方政府应加快产业结构调整,控制企业的污染物排放,才是治理雾霾的根本办法。  相似文献   

11.
济南市霾气候特征分析及其与地面形势的关系   总被引:9,自引:0,他引:9  
利用济南市1951~2006年地面气象观测资料,对济南市霾日数的变化规律进行了统计分析,并结合地面风速和气压场形势对霾与气象条件的关系进行了分析.结果发现:1980年代~1990年代霾日数最多,近几年有下降的趋势;秋冬季霾日数较多,夏季较少;霾发生的天气型主要有冷高压型、低压槽型等;污染物PM10的浓度与霾的发生有密切关系.  相似文献   

12.
选取沈阳市区9个典型的大气污染源冬季的PM10排放浓度资料,利用MM5耦合CALPUFF对2007年12月至2008年2月沈阳城市区域气象场和排放PM10浓度分布进行月平均数值模拟.结果表明:冬季沈阳地区受高压控制,北风较强,并经过增强、减弱的过程,多呈现对大气污染物扩散不利的天气形势.高空为偏西风且风速较大时,地面和...  相似文献   

13.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

14.
利用常规气象观测资料、环境监测站点的空气污染物浓度监测资料、欧洲中心(ECMWF)提供的ERA-5逐时0.25°×0.25°再分析资料和NOAA研发的Hysplit后向轨迹模式,分析了 2020年3月29日-4月5日低纬高原的西双版纳地区持续性重度霾空气污染事件的特征、气象成因和污染物颗粒主要来源。结果表明:(1)重度霾污染期间,AQI值及PM2.5浓度值有显著日变化特征,表现为白天低、夜间高。(2)冷空气势力偏弱,脊前暖平流使中低层大气增温,有利于西双版纳地区大气层结的稳定,无明显水汽输送带,整个过程空气湿度较低,连续8天重度霾污染并未出现传统上高湿的气象霾特征。稳定的大气层结和逆温层的存在削弱了大气在垂直方向上的对流交换。(3)受均压场控制,地面和低空风速小,较低的混合层厚度和较小的通风系数等共同作用,使得污染物颗粒在水平和垂直方向上扩散受到抑制,导致污染物颗粒聚集。(4)各污染物浓度值与MODIS/Terra卫星反演东南亚境外火源点数有显著相关性,其中火源点个数与AQI正相关高达0.5。(5)由Hysplit后向轨迹模式表明此次重霾污染过程中颗粒物可能来源主要是缅甸马圭、曼德勒和东枝境外的输入型累积传输。西双版纳位于低纬高原地区,受地形影响,污染物积聚在景洪城区及周边澜沧江河谷地带之后,很难通过水平输送离开,这是也是造成此次连续重度霾污染事件的重要原因。  相似文献   

15.
选取沈阳市区9个典型的大气污染源冬季的PM10。排放浓度资料,利用MM5耦合CALPUFF对2007年12月至2008年2月沈阳城市区域气象场和排放PM10。浓度分布进行月平均数值模拟。结果表明:冬季沈阳地区受高压控制,北风较强,并经过增强、减弱的过程,多呈现对大气污染物扩散不利的天气形势。高空为偏西风且风速较大时,地面和高空有明显的风向和风速的切变,切变有增强和减弱的变化。2007年冬季沈阳市区域月平均大气污染最严重的是2月,污染物分布主要集中在南部、东南部地区,南部地区大气污染最为严重。PM10。浓度分布的范围与风场、地形有直接的关系。地势平坦、风速大时,污染物扩散范围大,污染物浓度小;地势不平、风速小时,污染物扩散范围小,污染物浓度大。  相似文献   

16.
利用常规气象观测资料和NCEP再分析资料对2013年12月1—8日常州地区一次持续性严重霾天气过程进行了综合分析。结果表明:常州地区此次持续性霾天气过程中高纬地区高层环流较平直,低层为弱西南暖湿气流,冷空气势力较弱;2013年11月30日常州地区位于地面"L"型高压顶部,偏西风对常州上游地区污染物的输送和12月1日清晨出现的逆温层,导致扩散条件较差是此次霾过程爆发的主要原因;持续的地面均压场控制和频繁出现的逆温层为霾提供了维持机制,12月9日的强冷空气造成了此次霾过程消散。持续性霾天气过程期间,温度露点差减小,相对湿度增大,风力减小,多为偏西偏南风,且近地面多为弱的上升运动,为霾的维持提供了稳定的层结和充足的水汽。常州地区此次霾天气过程的主要污染物为颗粒物(PM2.5、PM10),部分SO_2、NO_2及O_3等污染物通过协同转化作用生成颗粒物,导致霾粒子浓度剧增是此次霾过程爆发的重要内因;后向轨迹模式的模拟结果也表明常州上游地区污染物的输送对此次霾过程亦有贡献。  相似文献   

17.
京津冀地区一次严重霾天气过程及其影响因素分析   总被引:1,自引:0,他引:1  
利用大气污染监测资料、常规气象观测资料及NCEP再分析资料,对2013年1月9—17日京津冀地区一次严重霾天气过程的特征及其与气象条件的关系进行分析。结果表明:此次霾天气过程京津冀地区6个城市(北京、天津、石家庄、保定、邯郸、唐山)的PM10、SO2和NO2污染物日平均浓度均较高,变化趋势基本相同,其中PM10日平均浓度的变化幅度最大,峰值出现在11—13日之间;石家庄、保定和邯郸市的污染最严重,PM10日平均浓度最大值分别为0.94 mg·m-3、0.95 mg·m-3和0.82 mg·m-3。SO2和NO2日平均浓度的变化幅度较小,但浓度值均较大,基本为0.10 mg·m-3以上。影响此次霾天气过程的大范围环流形势为纬向型,存在较强的逆温层,弱下沉运动使近地层大气处于静稳状态,不利于污染物扩散,而近地面较小的风速和低层相对湿度小于90%为霾的形成提供了有利条件。另外,后向轨迹分析表明,此次污染过程京津冀地区的气团主要来自新疆地区,路径主要是从西北气流转为西南气流,携带南方的湿空气和污染物向京津冀地区输送。  相似文献   

18.
利用常规气象观测资料、探空站资料、环保部门提供的AQI监测数据,对2015年1月26—27日温州地区重度霾天气过程进行了综合分析。结果表明:此次重度霾过程影响时间之长,影响之严重,在温州霾气象记录中是十分罕见的;高空3层西北气流控制,风速较小,静稳天气,地面冷空气扩散南下,将浙北方污染物推至浙南,重度霾天气是由北方污染物输入和本地污染物叠加,地面存在弱辐合,近地面又存在逆温层不利于水汽和污染物在垂直方向扩散,利于大气颗粒污染物在浙南温州地区堆积,使得霾污染天气稳定维持;此后,冷空气主体南下,风速加大,气象扩散条件转好,污染物扩散至海上或福建,霾渐消散。  相似文献   

19.
南昌市一次连续空气污染过程的气象条件分析   总被引:4,自引:0,他引:4  
2004年12月8—16日南昌市出现了一次连续空气污染过程。利用城市空气污染观测资料和气象常规观测资料,从天气形势和主要气象要素两个方面,对此次空气污染过程进行了分析。结果表明,此次连续空气污染事件都是出现在风速小、无雨和有雾或霾的气象条件下,高空主要为高压脊的形势或是处在西风槽底的平直气流中,低层大气稳定,中层大气增温明显;地面形势主要为地面高压脊、高压底部或是倒槽前部,地面有弱冷空气南下时不一定能改变污染状况。极厚、极强的逆温层和极小风速的持续存在是造成污染物高浓度最重要的气象条件。此外,地形也是影响南昌市空气质量水平的因素之一。  相似文献   

20.
秸秆焚烧导致的江苏持续雾霾天气过程分析   总被引:3,自引:2,他引:1  
利用常规观测资料和NCEP再分析资料,从污染情况、环流背景、地面气象要素特征、水汽、热力及动力条件等几个方面对江苏2012年6月中上旬持续雾霾天气进行了分析。结果表明:江苏及周边省市秸秆焚烧造成大量的气溶胶粒子悬浮于空中,是造成江苏出现持续不同程度的霾天气的主要原因,同时也为雾滴形成提供了丰富的凝结核;中高层冷空气强度未能完全破坏底层相对稳定的层结,较小的风速和较大的湿度有利于雾霾的发展,重度霾或雾风速多在3 m/s以下,且相对湿度在80%以上。频繁的弱降水过程对雾的形成和霾的加重起到了重要的作用;低层的逆温或近中性层结的维持,为雾霾持续存在提供了有利的层结条件,且浓雾形成主要有辐射贴地逆温和平流逆温两种形式;垂直上升运动与雾霾的发展之间有着互相影响的紧密联系,在具备一定的水汽条件时,底层弱的上升运动有利于雾体的向上发展从而促进雾的加浓。后向轨迹模拟雾霾相对较严重的6月10日污染轨迹表明沿江和苏南地区污染物浓度上升除了本地悬浮颗粒物外,安徽境内的污染物的输送也是一个重要因素,而北部地区更多还是本地的污染源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号