首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A numerical boundary integral equation method combined with a non-linear time stepping procedure is used for the calculation of wave forces on a large, submerged, horizontal circular cylinder. As the method is based on potential theory, all computations are performed in the inertia dominated domain, that is, for small Keulegan-Carpenter numbers. Computations are carried out for the Eulerian mean current under wave trough level equal to zero. When the cylinder is moved towards the sea bed the computations show that the inertia coefficients increase significantly, which is associated with a blockage effect. Furthermore, the effect of the wave steepness is reduced when the submergence of the cylinder is increased. In the vicinity of the free water surface the vertical inertia coefficient is highly dependent upon the wave steepness, which tends to reduce it, whereas the horizontal inertia coefficient is only slightly dependent on the wave steepness. Computations are also carried out for cylinder diameters comparable with the wave length. Finally, inertia coefficients computed by the present method are compared with some analytical results by Ogilvie [(1963), First and second order forces on a cylinder submerged under a free surface. J. Fluid Mech. 16, 451–472]. As long as the assumptions leading to Ogilvie's theory are fulfilled (cylinder radius small compared to the wave length), the results are quite similar.  相似文献   

2.
《Coastal Engineering》2006,53(10):799-815
Using the volume of fluid (VOF) method, a numerical model is developed to estimate the nonlinear dynamics of a pontoon type moored submerged breakwater under wave action and the forces acting on the mooring lines, for both the vertical and inclined mooring alignments. The model is developed for a two-dimensional wave field in a vertical plane. The finite displacements of the breakwater such as sway, heave and roll in a very small time step are considered and the numerical grid cells intersected by the breakwater surfaces for changing its position due to wave action are treated using the concept of porous body model. Also, two-dimensional experimental studies are carried out to investigate the performance of the proposed model. The comparison of the computed and measured results reveals that the developed numerical model can reproduce well the dynamics of the floating body and the mooring line forces.  相似文献   

3.
I~IOXdifferent tabes of submerged structures restricting wave development are extensively appliedin coastal and barber engineering. Generally speaking, the submerged structures are classified intothree types (see Fig. 1 ): a submerged horizontal plate (fixed submerged structure), a submergedbreakwater (rectangular or trapezoidal) and a step-take structure (toPOgraphy). In order to get aclear understanding of the characteristics of wave motion around submemed structures, manyFig. 1. Fol'InS…  相似文献   

4.
赵明  滕斌  谭丽 《中国海洋工程》2004,18(3):335-346
In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two-dimensional Navier-Stokes equations is solved numerically with a finite element method. In order to track the moving non-linear wave surface boundary, the Navier-Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three-step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data.Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder.The effects of the KC number and the cylinder depth on the wave forces are studied.  相似文献   

5.
人工鱼礁在波浪作用下水动力特性的研究对于人工鱼礁的工程安全与设计具有非常重要的意义。基于有限体积法,采用推板造波形式,通过利用VOF方法求解波面的方式建立了模拟人工鱼礁与波浪相互作用的三维数值波浪水槽。基于该数值模型研究了波浪作用下三角型镂空人工鱼礁的受力情况,并与物理模型实验结果进行比较,结果显示模拟得到的人工鱼礁受力和波浪形态均与实验结果吻合良好。根据数值模拟结果,拟合出波浪作用下人工鱼礁的水动力系数。单体三角型镂空人工鱼礁的速度力系数Cd随着Kc数、Re数的增加呈现减小的趋势;惯性力系数Cm则随着Kc数、Re数的增加呈现波动趋势。数值模拟结果显示在一个波浪周期内,人工鱼礁周围产生了较强的上升流和回流,其内部产生了明显的涡旋结构。研究结果为人工鱼礁的设计优化提供了理论依据。  相似文献   

6.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

7.
Yong Liu  Bin Teng 《Ocean Engineering》2008,35(16):1588-1596
This study examines the hydrodynamic performance of a modified two-layer horizontal-plate breakwater. The breakwater consists of an upper submerged horizontal porous plate and a lower submerged horizontal solid plate. By means of the matched eigenfunction expansion method, a linear analytical solution is developed for the interaction of water waves with the structure. Then the reflection coefficient, the transmission coefficient, the energy-loss coefficient and the wave forces acting on the plates are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a single submerged horizontal solid plate and a single submerged horizontal porous plate. Numerical results show that with a suitable geometrical porosity of the upper plate, the uplift wave forces on both plates can be controlled at a low level. Numerical results also show that the transmission coefficient will be always small if the dimensionless plate length (plate length versus incident wavelength) exceeds a certain moderate value. This is rather significant for practical engineering, as the incident wavelength varies over a wide range in practice. Moreover, it is found that the hydrodynamic performance of the present structure may be further enhanced if the lower plate is also perforated.  相似文献   

8.
A three-dimensional numerical model for determination of the interaction between non-linear water waves and a structure is developed. The model is based on a boundary integral equation method for the spatial solution of a potential theory problem, combined with a time-stepping method based on the fully non-linear free surface conditions for temporal updating of moments on a structure in the fluid domain. Comparison with experimental results shows good agreement. The present model is considered to be one of the steps towards a three-dimensional numerical model in which the wave-structure interaction in a wave tank can be simulated.  相似文献   

9.
10.
Mean and low frequency wave drifting forces on floating structures   总被引:1,自引:0,他引:1  
A recently developed method, based on three-dimensional potential theory, to compute the mean wave drifting forces on a free floating structure in regular waves, is extended to include low frequency oscillatory components which arise when the structure is floating in regular wave groups consisting of two regular waves with small difference frequency. This completes the information necessary for the determination of the wave drifting forces under arbitrary irregular wave conditions.In regular wave groups the drifting forces not only depend on the first order velocity potential and the first body motions, but also on the wave exciting forces due to the low frequency part of the second order potential. For the general three-dimensional case the latter contribution can only be determined numerically and at the expense of long computation times. Since this contribution is generally not large compared to components which may be determined using linear potential theory it is included using a simple approximation. Results of the method of approximation are compared with some two-dimensional cases for which exact solutions are known.Results of computations of the total mean and low frequency surge forces on a rectangular barge and a column stabilized semi-submersible platform are presented. For both structures, the computed mean surge drifting forces in regular head waves are compared with results of model tests.The computed components of the total mean drifting forces are presented. It appears that for both the barge and the semi-submersible the same components are of importance.For the semi-submersible, the computed low frequency second order surge forces in head waves are compared with results obtained from a test in irregular head waves using cross-bispectral analysis methods.  相似文献   

11.
By extending the linear frequency domain theory, a quasi-non-linear time-domain technique has been developed to investigate the large amplitude motions of catamarans in regular waves. The non-linearity of hydrodynamic forces included in this practical method comes from variations of a ship's submerged portion. These forces are obtained from a database generated by the linear frequency domain method at each time step. The coupled equations, heave and pitch, are solved in the time domain by using the Runge-Kutta method with proper initial values. In order to investigate the non-linear effects of large amplitude motions of the V-1 catamaran in the head-sea condition, numerical results obtained from the linear and non-linear strip methods have been compared with those obtained from a series of experiments carried out in the towing tank of the Hydrodynamics Laboratory at the University of Glasgow. Based on the comparative studies, the numerical results obtained from the time-domain program can provide better predictions for the large amplitude motions of catamarans than the linear frequency domain method. It is concluded that the non-linear effects are significant when the model speeds and wave amplitudes increase. The peak values of large amplitude motions around the resonance frequencies, as obtained from the non-linear time-domain predictions as well as from measurements, are smaller than those obtained from the linear theory.  相似文献   

12.
大深度分层流体中二维淹没浮体的波浪力分析   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了大深度分层流体中二维任意形状淹没浮体的波浪力特性。首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。  相似文献   

13.
An alternative, relatively straightforward, method is presented for calculating non-linear, two-dimensional wave interaction with submerged bodies. The free surface is represented by a vortex sheet and the body surface by a source sheet in a time-stepping procedure with the limitation that overtopping may not occur. Errors inherent in the method are assessed. For starting flow over a circular cylinder with diameter up to at least half a wavelength, the surface profiles local to the cylinder closely approximate those for longer times after only one period. By this time forces, for waves of even moderate steepness, have settled down to values predicted by analytical linear theory. A good approximation to effects associated with wave trains of infinite extent may thus be obtained by simulating a fairly limited space (several wavelengths).  相似文献   

14.
V. Armenio 《Ocean Engineering》1998,25(10):881-905
In this paper, an improved version of the MAC method (SIMAC), recently developed at the University of Trieste, is employed for the study of the wave generation and propagation into a numerical wave tank and for the evaluation of dynamic loads over submerged fixed bodies.In the first part of the work, a numerical wave tank was developed. A pneumatic wave-maker at the left-hand side of the tank was implemented by the use of a pressure perturbation at the free surface. The pressure varies in time with a sinusoidal law. Grid sensitivity tests, checks on mass conservation and the Fourier analysis of the waves which propagate in the tank showed the effectiveness of SIMAC in treating such problems. The wave-maker was then calibrated.In the second part of the work, the dynamic loads over submerged square and rectangular cylinders were evaluated. The time records of the horizontal and vertical forces which act over the body were then treated using the Morison equation in order to derive the inertial and damping coefficients. The analysis was carried out for KC numbers ranging between 0.447 and 3.58. Numerical results satisfactorily tallied with experimental data. The analysis of the velocity field near the body evidenced the influence of vortex generation and vortex shedding on the coefficients of inertial forces.  相似文献   

15.
This study employed direct numerical simulation to simulate the fully nonlinear interaction between the water waves, the submerged breakwater, and the seabed under differing wave conditions. In the numerical simulation, the laminar flow condition in the seabed was applied to evaluate the more exact fluid resistance acting on the porous media. Varying incident wave conditions were applied to the flow field resulting from the wave–structure–seabed interaction, and the variation in the pore water pressure beneath the submerged breakwater was investigated along the cross-section of the submerged breakwater. Structural safety and scouring were also considered on the basis of the numerical results for the flow field around the structure and the variation of the pore water pressure.  相似文献   

16.
浅水区波浪非线性效应对砂质海床动力响应的影响   总被引:4,自引:2,他引:2  
以广义Biot动力固结理论为基础,运用一阶椭圆余弦波和二阶Stokes波等非线性波浪理论考虑浅水区波浪荷载的非线性效应,在时域上采用有限元方法对非线性波浪力作用下饱和砂质海床的动力响应进行了数值求解,并与线性波浪作用下海床动力响应特性进行了对比分析。结果表明,随着波长与水深之比L/d及无量纲参数T(g/d)^1/2的增大,非线性波浪对海床动力响应的影响增大。与线性波浪理论相比,孔隙水压力与有效应力幅值的增大效应非常显著。因此在近海海洋建筑物设计与工程场地评价中,波浪力的非线性特性必须引起注意。  相似文献   

17.
The purpose of the study was to develop a prediction technique to simulate the motion response of a damaged platform under wave, wind and current forces. The equations of motion were obtained using Newton's second law and the numerical solution technique of non-linear equations of motion is explained for intact and damaged cases. The analysis technique employs large displacement non-linear equations of motion. Solutions were obtained in the time-domain to predict the motion characteristics. In this study, analysis procedures were developed to calculate: (a) wave loading on asymmetrical structural configurations; (b) hydrodynamic reaction forces (inertia or moment of inertia, damping and restoring forces) on asymmetrical shapes. During the damage simulation, change in the mass of the structure as well as wave and hydrodynamic reaction forces, were taken into account. The computer program developed for the time-domain simulation is introduced. In order to avoid slowly decaying transient motions of the structure due to wave excitation forces, an exponential ramp function is used. The application of a ramp function enables a quick convergence in the time-domain solution of equations of motion. Results of a numerical motion simulation program and the experimental studies are also presented in order to make comparisons. Comparison of the test results with the numerical simulations shows good agreement for heave, roll and pitch motions. The formulations and the computational procedures given in this paper provide useful tools for the investigation of the non-linear dynamic stability characteristics of floating structures in waves for intact, damaged and post-flooding conditions in six-degrees of freedom.  相似文献   

18.
The hydrodynamic problem arising form the interaction of linear water waves with a wave energy device consisting of two coaxial vertical cylinders of different radii is investigated. One cylinder is riding in waves, while another is submerged in fluid. By use of the method of separation of variables and the method of matched eigenfunction expansion, analytical expressions for the potentials are obtained. Using the expressions for the potentials, analytical expressions for the hydrodynamic coefficients and exciting forces/moments on the device are obtained. Numerical results of the hydrodynamic coefficients and exciting forces/moments are presented for some ratios of the radius of the submerged cylinder to that of the riding one. It is found that the radius of the submerged cylinder has a significant influence on the hydrodynamic coefficients and exciting forces/moments for relatively bigger radius of the submerged cylinder at low frequencies.  相似文献   

19.
给出了一种联合瞬态格林函数和Rankine源进行有航速浮体时域水动力分析的混合——边界元方法。在三维混合边界元方法中,通过一个匹配面将流体域划分为内域和外域,在内域中使用Rankine源以模拟直壁或非直壁船体及线性或非线性自由面条件,在外域中使用瞬态格林函数以满足自由面条件和远方辐射条件。使用该方法计算了一个有航速潜没圆球的波浪力,和解析结果的比较证明了该方法的正确性。进一步给出了一个有航速Wigley船的水动力结果,计算结果稳定,没有外传波向内反射的现象发生。  相似文献   

20.
Evolution of waves and currents over a submerged laboratory shoal   总被引:1,自引:0,他引:1  
The vertically-integrated effect of interaction between waves and wave-induced currents on wave transformation over a submerged elliptic shoal was investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction- diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269–284.]. The numerical simulations were performed using two numerical wave-current model systems: one, a combination of the wave model SWAN and the current model SHORECIRC, and the other, a combination of the wave model REF/DIF and the same current model. A time-dependent, phase-resolving wave and current model, FUNWAVE, was also utilized to simulate the experiment. In the simulations, the developed wave-induced currents defocused waves behind the shoal and brought on a wave shadow zone that showed relatively low wave height distributions. For the breaking case of monochromatic waves, the wave heights computed using FUNWAVE showed good agreement with the measurements and the resulting wave-induced currents showed a jet-like velocity distribution in transverse direction. And the computed results of the two model combinations agreed better with the measurements than the computed results obtained by neglecting wave-current interaction. However, it was found that for the case in which transverse interference pattern caused by refracted waves was strong, REF/DIF-SHORECIRC did not correctly evaluate radiation stresses, the gradients of which generate wave-induced currents. SWAN-SHORECIRC, which cannot deal with the interference patterns, predicted a jet-like wave-induced current. For breaking random wave cases, the computed results of the two model combinations and FUNWAVE agreed well with the measurements. The agreements indicate that it is necessary to take into account the effect of wave-induced current on wave refraction when wave breaking occurs over a submerged shoal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号