首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have measured 238U–206Pb, 235U–207Pb, and 232Th–208Pb ages on Quaternary zircons by laser ablation, single-collector, magnetic sector inductively coupled plasma mass spectrometry (LA-ICP-MS). To obtain reliable ages for Quaternary zircons, corrections for initial disequilibrium associated with deficits and excesses of both 230Th and 231Pa relative to secular equilibrium resulting from differential partitioning during zircon crystallization or source melting must be made. In contrast, the 232Th–208Pb decay system is clearly advantageous for samples affected by disequilibrium because the 232Th decay system lacks long-lived intermediate daughter isotopes. Conventionally, the initial disequilibrium for the 238U and 235U decay series has been determined by the distribution ratio between the melt and zircon (i.e., ƒTh/U = (Th/U)Zircon/(Th/U)Melt and ƒPa/U = (Pa/U)Zircon/(Pa/U)Melt). In our study, these correction factors were determined from comparison of the measured 238U–206Pb and 235U–207Pb ages with 232Th–208Pb ages obtained for three zircons of known eruption and, in some cases, zircon crystallization ages (Kirigamine Rhyolite, Bishop Tuff, and Toga Pumice). The resulting correction factors are ƒTh/U = 0.19 ± 0.14 and ƒPa/U = 3.66 ± 0.89 (Kirigamine Rhyolite), ƒTh/U = 0.24 ± 0.20 and ƒPa/U = 3.1 ± 1.2 (Bishop Tuff), and ƒTh/U = 0.28 ± 0.17 and ƒPa/U = 3.04 ± 0.99 (Toga Pumice). Although the uncertainties of these f values are relatively large, our results support the adequacy of the conventional approach for correction of initial disequilibrium. A recent study published results that apparently show zircon crystallization ages are younger than the eruption age of Bishop Tuff. It seems to be difficult to eliminate these discrepancies, even if the Th/U partitioning and disequilibrium generated during partial melting are taken into account for recalculation of its zircon age. However, magma chamber process and history of Bishop Tuff are too complex to obtain accurate zircon ages by U–Pb method. To overcome this, therefore, the Th–Pb zircon dating method is a key technique for understanding complex, pre-eruptive magma processes, and further efforts to improve its precision and accuracy are desirable.  相似文献   

2.
Zircon is one of the most commonly used accessory minerals rich in U and Th for(U-Th)/He dating system. Compared with apatite, zircon has a higher He closure temperature (~190℃), which gives it more advantages in solving the problem of source material and thermal history reconstruction in sedimentary basins. However, the crystals of zircons often have U and Th zoning development, with obvious differences in concentration. Even the standard sample of FCT(Fish Canyon Tuff)zircon which is widely used in (U-Th)/He dating has an average age dispersion of about 10%. In this study, the Alphachron He isotope mass spectrometer is used for laser melting of a batch of single grains of FCT zircon(11 grains)to determine their 4He content. The contents of U and Th of parent isotopes are accurately determined by automatic injection of Agilent 7900 ICP-MS and isotope diluent method. The Th/U ratios of the 10 FCT zircons calculated with (U-Th)/He average age in this paper range from 0.52 to 0.67, which are consistent with the Th/U ratios of 186 reported so far. According to the Th/U ratios of 189 FCT zircons published in the statistical literature, we found that only three of them had high Th/U ratios, namely, 1.12, 1.16 and 1.5, the other 186 FCT zircons(occupy>98%) had a Th/U ratio less than 1. Based on previous results and the 10 Th/U ratios measured in this paper, 196 FCT zircons have a normal Th/U ratio ranging from 0.27 to 1.00, with an average ratio of 0.56(n=196). Excluding one abnormally old age, the(U-Th)/He ages of the remaining FCT zircons in this study range from 26.61 to 31.91Ma, with a weighted mean age of (28.8±3.1)Ma (2SD, n=10), which is consistent with the mean age ((28.3±3.1)Ma, 2σ, n=127) or (28.29±2.6)Ma(2σ external error, 9.3%, n=114)obtained by several other international laboratories. This indicates that the zircon single particle(U-Th)/He dating process established by our laboratory is reliable. For the zircon samples with U, Th banding and concentration differences prevailing, determining the distribution of U, Th elements in the crystal prior to the (U-Th)/He experiment is essential for understanding effects of geometry and elemental zoning on nuclear recoil and diffusion and the interpretation of (U-Th)/He age data.  相似文献   

3.
Single-crystal (U-Th)/He dating of 32 apatite and zircon crystals from an impact breccia yielded a weighted mean age of 663 ± 28 ka (n = 3; 4.2 % 2σ uncertainties) for the Monturaqui impact structure, Chile. This ~350 m diameter simple crater preserves a small volume of impactite consisting of polymict breccias that are dominated by reworked target rock clasts. The small size, young age and limited availability of melt material for traditional geochronological techniques made Monturaqui a good test to define the lower limits of the (U-Th)/He system to successfully date impact events. Numerical modeling of 4He loss in apatite and zircon crystals shows that, for even small craters such as Monturaqui, the short-lived compressional stage and shock metamorphic stage can account for the observed partial to full resetting of (U-Th)/He ages in accessory minerals. Despite the distinctly different 4He diffusion parameters of apatite and zircon, the 2σ-overlapping youngest ages are recorded in both populations of minerals, which supports the inference that the weighted mean of the youngest (U-Th)/He population is the age of formation of this impact structure.  相似文献   

4.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   

5.
High spatial resolution U–Pb dates of zircons from two consanguineous ignimbrites of contrasting composition, the high-silica rhyolitic Toconao and the overlying dacitic Atana ignimbrites, erupted from La Pacana caldera, north Chile, are presented in this study. Zircons from Atana and Toconao pumice clasts yield apparent 238U/206Pb ages of 4.11±0.20 Ma and 4.65±0.13 Ma (2σ), respectively. These data combined with previously published geochemical and stratigraphic data, reveal that the two ignimbrites were erupted from a stratified magma chamber. The Atana zircon U–Pb ages closely agree with the eruption age of Atana previously determined by K–Ar dating (4.0±0.1 Ma) and do not support long (>1 Ma) residence times. Xenocrystic zircons were found only in the Toconao bulk ignimbrite, which were probably entrained during eruption and transport. Apparent 238U/206Pb zircon ages of 13 Ma in these xenocrysts provide the first evidence that the onset of felsic magmatism within the Altiplano–Puna ignimbrite province occurred approximately 3 Myr earlier than previously documented.  相似文献   

6.
(U-Th)/He isotopic dating has been developed very quickly in recent years, due to the recognition that the thermal history of rock at low temperature can be effective revealed by such dating method. In particular, He closure temperature in apatite (40~80℃) is very low, so apatite (U-Th)/He ages can reflect the thermal history information of the low-temperature stage, and have a good application prospect in the field of low-temperature thermal chronology. However, because of many influence factors and complicated measurement procedures, the development of apatite He dating in China remains in its early stage. In this study, a measurement procedure was established at the (U-Th)/He dating laboratory of Institute of Geology, China Earthquake Administration. We measured the daughter isotopic helium by diode laser heating four batches of a total seventy-five grains of Durango apatite in an Alphachron helium mass spectrometry system. Then the apatite grains were dissolved to precisely measure the concentration of parent nuclides (U, Th)using the solution isotope dilution method through an automatic sampling ICP-MS (Agilent 7900). Results show that the Th/U values of Durango apatite grains were in the range of 17.23 to 23.60, while all the 75ages were in the range of 28.61 to 34.51Ma with an average of (31.71±1.55)Ma (1σ), which are consistent with the international calibrated ages.  相似文献   

7.
(U-Th)/He热定年技术是近年来用于沉积盆地热史研究的新技术,目前主要是利用磷灰石和锆石的He年龄来揭示地层的构造抬升和热历史.本文依据塔里木盆地钻井样品的实测磷灰石和锆石(U-Th)/He年龄数据,初步得出了该地区磷灰石(U-Th)/He年龄的封闭温度为85℃,并建立了深度/温度-年龄演化模式;锆石则未达到其较高的封闭温度.综合利用本次实测的He年龄数据结合磷灰石裂变径迹和等效镜质组反射率等古温标,模拟计算了塔里木盆地孔雀1井(KQ1)自奥陶纪末期以来的热历史.模拟结果表明,孔雀1井区奥陶纪末期的地温梯度可达35.5℃/km,志留纪—泥盆纪时期的地温梯度为33.3~34.5℃/km,白垩纪末期地温梯度27.6℃/km左右.因此,(U-Th)/He年龄结合其他古温标综合模拟的方法可以很好地揭示沉积盆地的热历史.特别是该技术为缺乏常规古温标的塔里木盆地下古生界碳酸盐岩层系所经受热史的恢复提供了新的方法.  相似文献   

8.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

9.
We present sub-crystal-scale 238U–230Th zircon ages and 238U–230Th–226Ra plagioclase ages of bulk mineral separates from the Holocene (2.0–2.3 ka) eruptions of the Rock Mesa (RM) and Devil's Hills (DH) rhyolites at South Sister volcano, Oregon. We link these age data with sub-crystal trace-element analyses of zircon and plagioclase to provide insight into the subvolcanic system at South Sister, as an example of a small-volume continental arc volcano. Our results document the presence of coeval yet physically-distinct regions within the magma reservoir and constrain the timescales over which these heterogeneities existed. Zircons from the RM and DH dominantly record ages from 20 to 80 ka, with some grains recording ages > 350 ka, whereas plagioclase records 230Th–226Ra ages of 2.3–6.8 ka (RM) and 4.0–9.6 ka (DH-3) and a 238U–230Th age of 10 ± 34 ka (DH-3). We interpret zircons with ages < 350 ka as antecrysts inherited from a longer lived upper-crustal magma reservoir from which the rhyolites were generated, based on crystallization ages coeval with earlier periods of silicic volcanism at South Sister, the undersaturated nature of the RM and DH magmas with respect to zircon, and Ti-in-zircon temperatures consistent with low-temperature (< 815 °C) crystallization. In contrast, plagioclase ages are near the eruption age and dominantly preserve information about the recent (< 10 ka), higher-temperature evolution of the host magmas. Although zircon and plagioclase record different crystallization ages, each phase crystallized over the same time period in the RM compared to DH rhyolites. Linking these crystal age data with sub-crystal trace-element analyses demonstrates that zircon and plagioclase have distinct trace-element characteristics between eruptions, which require that the RM and DH crystals (and therefore magmas) were derived from distinct regions that had evolved independently for > 50 ka within a heterogeneous magmatic system and coexisted as physically-distinct, dominantly-liquid bodies prior to eruption. Thus, we favor a model where rhyolites are generated in independent batches by accumulation of evolved liquids in a heterogeneous, largely crystalline reservoir. Similarities in crystal age and chemical data to that at other young silicic systems (e.g., Mount St. Helens, Okataina Caldera Complex) suggest that this model may be more generally applicable to silicic magmas.  相似文献   

10.
The geochronology of cave deposits in the Cradle of Humankind UNESCO World Heritage Site in South Africa provides a timeframe essential for the interpretation of its fossils. The uranium-lead (U–Pb) and uranium-thorium disequilibrium (U/Th) dating of speleothems, mostly flowstones that underlie and blanket the fossil-bearing sediments, have been effective in this sense, but U–Pb is limited by the requirement of ∼1 ppm U concentrations and low common Pb contents, and U/Th has a c. 500 ka limit of applicability. Here we report age results for calcite-aragonite speleothems obtained using a new combined uranium-thorium-helium ((U,Th)–He) and U/Th dating routine. We reproduced within analytical uncertainty, the published U–Pb or U/Th ages for (a) flowstone in three drill core samples in the range 2000–3000 ka, (b) a flowstone hand sample taken at surface with an age of 1800 ka, and (c) five underground flowstone samples in the range 100–800 ka. Calcite retentivity for He under cave conditions is thus demonstrated. In the few cases where helium loss was observed in speleothems, only some of the subsamples were affected, and to varying degrees, suggesting loss by lattice damage not related to diagenetic processes, rather than volume diffusion. In the 100 to 800 ka range, the combined U/Th disequilibrium and (U,Th)–He method also yielded reliable values for initial (230Th/238U) and (234U/238U) activity ratios. Importantly, most subsamples had high initial (230Th/238U) values, ranging from 1.0 to 19.7, although having low Th/U ratios. This is probably due to incorporation of Fe–Mn oxides-hydroxides dust, on which 230Th was previously adsorbed. Such samples are mostly not dateable by U/Th without the additional input from the He analysis. If not detected and corrected for, such high initial (230Th/238U) values can lead to inaccurate U/Th and U–Pb ages. Our study shows that the incorporation of He analysis in U/Th dating has broad potential application, with four methods for calculating the ages, in carbonates from different environments where U-Pb or U/Th dating would not work.  相似文献   

11.
ZHANG Wei-bin  WU Lin  WANG Fei 《地震地质》2016,38(4):1107-1123
Apatite (U-Th)/He dating has gained popularity since its rejuvenation as geochronometry and thermochronometry applied in the deduction of the geological processes of the upper-three-km crust.However,this irreplaceable method,which has the lowest known closure temperature (~70℃),sometimes is suffering from large dispersion and deviation because of its dating theory,its analytical method,and its diffusion process.In this paper,we summarized ten factors impacting the accuracy of (U-Th)/He dating.They are grain size,fluid and mineral inclusions,α-particle ejection,α-particle implantation,U-Th zonation,radiation damage,chemical composition,samarium concentration,multiple thermal events,and U-series disequilibrium.We discussed how these ten factors would affect the (U-Th)/He ages and how to reduce and/or avoid the deviation caused by them.The factors of grain size (different size,different diffusion domain) and inclusions (parentless 4He) can be suppressed in the procedure of grain selection under binocular.It is the precise measurement of a homogenous crystal that endows the (U-Th)/He dating method credible due to the correction of α-particle ejection based on the dimension of crystals.The possible implantation of α-particles can be evaluated by the negative correlation of age and eU (eU=[U]+0.235[Th]).U-Th zonation,a heterogeneous distribution of parent nuclides,makes the correction of α-particle ejection inaccurate;besides,this factor also amplifies the side effects of radiation damage and grain size.LA-ICP-MS can detect this phenomenon.Radiation damage outstands when the samples experience reheating or long residence time in partial retention zone (40~70℃),indicated by the positive correlation between age and eU/[4He].Apatite (U-Th)/He age can be entangled by higher Cl content,with which the crystal accumulates more radiation damage,leading to a larger age,meanwhile this factor needs more investigation.Having larger half-life than U-series nuclides,the 147Sm is not a big problem in the dating of a large timescale,while more precise event needs the data of 147Sm in the age calculation.The multiple thermal events should be evaluated to exclude thermal perturbation,when applying the (U-Th)/He geo/thermochronology to the deduction of a particular thermal event.U-series disequilibrium has an impact on the ages smaller than 1Ma,making the age results larger than the true one.U-series disequilibrium method and mineral couples can solve this problem.Inclusion,α-particle ejection and implantation,and U-Th zonation are at the mercy of analytical methods.The factors stemming from helium diffusion in the crystals are grain size,radiation damage,Cl content,multiple thermal events.The dating theory of (U-Th)/He method renders U-series disequilibrium and 147Sm outstand as side effects in some specific conditions.It would be our pleasure if this paper could provide some useful information for the works relevant to this dating method.  相似文献   

12.
Examination of glass and crystal chemistry in the Rotoiti Pyroclastics (>100 km3 of magma) demonstrates that compositional diversity was produced by mingling of the main rhyolite magma body with small volumes of other magmas that had been crystallizing in separate stagnant magma chambers. Most (>90%) of the Rotoiti deposits were derived from a low-K2O, cummingtonite-bearing, rhyolitic magma (T1) discharged throughout the eruption sequence. T1 magma is homogeneous in composition (melt SiO2=77.80±0.28 wt.%), temperature (766±13 °C) and oxygen fugacity (NNO+0.92±0.09). Most T1 phenocrysts formed in a shallow (∼200 MPa), near water-saturated (awater=0.8) storage chamber shortly before eruption. Basaltic scoria erupted immediately before the rhyolites, and glass-bearing microdiorite inclusions within the rhyolite deposits, suggest that basalt emplaced on the floor of the chamber drove vigorous convection to produce the well-mixed T1 magma. Lithic lag breccias contain melt-bearing biotite granitoid inclusions that are compositionally distinct from T1 magma. The breccias which overlie the voluminous T1 pyroclastic flow deposits resulted from collapse of the syn-Rotoiti caldera. Post-collapse Rotoiti pumices contain T1 magma mingled with another magma (T2) that is characterized by high-K glass and biotite, and was cooler and less oxidised (712±16 °C; NNO−0.16±0.16). The mingled clasts contain bimodal disequilibrium populations of all crystal phases. The granitoid inclusions and the T2 magma are interpreted as derived from high-K magma bodies of varying ages and states of crystallization, which were adjacent to but not part of the large T1 magma body. We demonstrate that these high-K magmas contaminated the erupting T1 magma on a single pumice clast scale. This contamination could explain the reported wide range of zircon U–Th ages in Rotoiti pumices, rather than slow crystallization of a single large magma body.  相似文献   

13.
To provide better access to thermochronological data and understand the long‐term denudation history of the Japanese Islands, we compiled a low‐temperature thermochronological dataset of fission‐track (FT) and (U–Th–Sm)/He (He) ages for apatite and zircon in bedrocks. These thermochronometric ages are compiled from 90 literature sources and 1,096 localities, and include 418 apatite FT ages, 851 zircon FT ages, 42 apatite He ages, and 30 zircon He ages. Many FT ages have been reported previously; however, the number of He ages is limited in the Japanese Islands. The compiled data are spatially biased; for instance, more data are reported for the Chubu and Kinki districts and the Pacific coast of the Shikoku Island, whereas less data were available for the Tohoku and Chugoku districts. For better understanding arc‐scale uplift‐denudation history, further thermochronological research in the lesser‐studied regions and more He thermochronometric measurements are desired. This compilation will be updated and provided on the website of the Fission‐Track Research Group in Japan ( http://ftrgj.org/index.html ).  相似文献   

14.
230Th-238U radioactive disequilibrium was studied in the historical lava flows of the Mauna Loa and Kilauea, Hawaii. Large variations of the (230Th/232Th) ratio among lavas of the same volcano that were erupted at a few years' interval are interpreted as due to contamination. The contamination probably occurs by assimilation of zeolitic minerals formed by seawater interaction while the magma resides in a superficial chamber.  相似文献   

15.
柯坪塔格地区位于西南天山与塔里木盆地之间, 是塔里木地台的一部分, 其构造隆升与天山和塔里木盆地的演化密切相关. 本文首次将(U-Th)/He热定年技术应用于该地区构造抬升的研究, 对该区震旦系露头样品的磷灰石和锆石的(U-Th)/He进行了年龄测定和热史模拟, 结果表明柯坪塔格地区主要经历了4期构造抬升事件, 导致震旦系抬升至地表, 其中磷灰石(U-Th)/He年龄揭示了晚白垩世和中新世两期的构造抬升事件. 在早石炭世, 震旦系温度达到最大, 介于133~150°C之间, 结合沉积埋藏史得到当时的最大埋深是3400~3900 m. 在渐新世-中新世, 受印度-欧亚板块碰撞远程效应的影响, 柯坪塔格地区沿柯坪塔格-沙井子断裂向巴楚隆起上逆冲, 地层快速抬升遭受剥蚀. 在15~10 Ma时, 柯坪塔格地区震旦系已抬升至地表. 自早石炭世至今, 柯坪塔格地区总剥蚀量达6170 m. 柯坪塔格地区自中生代以来的构造-热演化史与塔里木盆地北缘是一致的, 但与天山及处于塔里木盆地内部的巴楚隆起的构造抬升过程存在差异. 中新世以后, 受喜山运动远程效应影响, 柯坪塔格和天山才同处于抬升状态; 而巴楚隆起在古近纪早期仍处于抬升剥蚀状态, 与柯坪塔格地区接受沉积相反. 本文利用(U-Th)/He热定年技术成功地揭示了柯坪塔格地区自震旦纪以来的构造-热演化史, 这些结果有利于人们对这一地区构造抬升的正确认识. 同时, 本研究对塔里木盆地的油气勘探及天山地区的构造研究具有指导意义.  相似文献   

16.
Yu  Shun  Chen  Wen  Sun  Jingbo  Shen  Ze 《中国科学:地球科学(英文版)》2019,62(4):719-732
To gain a better quantitative understanding of zircon(U-Th)/He ages and evaluate the applicability of zircon(U-Th)/He dating, the diffusion characteristics, He diffusion kinetics, helium partial retention zone(HePRZ), closure temperature, and(U-Th)/He ages were investigated using high-precision laboratory step heating experiments based on the thermally activated diffusion process. The ln(D/a~2) in Fish Canyon Tuff(FCT) zircons determined from laboratory step heating experiments was negatively correlated with reciprocal temperature, as expected for thermally activated volume diffusion. The zircon activation energies ranged from 144 to 184 kJ mol~(-1) with a mean of 169±12 kJ mol~(-1). The closure temperatures ranged from 144 to 216°C(a cooling rate of 10°C Ma~(-1) and an effective grain radius of 38–60 μm) with an average of 176±18°C. The calculated closure temperature increased with increasing cooling rate, yielding an average zircon He closure temperature of ~136°C at a slow cooling rate of 0.1°C Ma~(-1), whereas the closure value was ~199°C at a cooling rate of 100°C Ma~(-1). The closure temperature increased with the equivalent spherical radius assuming a constant cooling rate. The He ages from FCT zircons were negligibly affected by grain size because of the rapid cooling. He preserved in the zircon was sensitive to temperature and holding time, and the temperature range for zircon HePRZ gradually decreased with increasing holding time. The(U-Th)/He ages from 26 FCT zircons yielded an algorithmic mean of 28.3±0.3 Ma(S.E.) and a geometric mean of 28.4±0.3 Ma(S.E.), consistent with the ages of 28.4±1.9 Ma reported by other laboratories. The FCT zircons were characterized by rapid cooling, young(U-Th)/He ages with good reproducibility, and low alpha doses. Weak correlations between the He ages and effective uranium(eU) concentrations from the FCT zircons indicated radiation damage did not significantly affect He diffusivity.  相似文献   

17.
Two mineralogically and chemically distinct rhyolite magmas (T1 and T3) were syn-erupted from the same conduit system during the 21.9 ka basalt intrusion-triggered Okareka eruption from Tarawera volcano, New Zealand. High spatial resolution U–Th disequilibrium dating of zircon crystals at the ~ 3–5 μm scale reveals a protracted yet discontinuous zircon crystallization history within the magmatic system. Both magma types contain zircon whose interiors predate the eruption by up to 200 ka. The dominant age peak in the T1 magma is ~ 30 ka with subordinate peaks at ~ 45, ~ 75, and ~ 100 ka, whereas the T3 magma has a dominant zircon interior age peak at ~ 90 ka with smaller modes at ~ 35 and ~ 150 ka. These patterns are consistent with isolated pockets of crystallization throughout the evolution of the system. Crystal rim analyses yield ages ranging from within error of the eruption age to at least ~ 90 ka prior to eruption, highlighting that zircon crystallization frequently stalled long before the eruption. Continuous depth profiling from crystal rims inward demonstrates protracted growth histories for individual crystals (up to ~ 100 ka) that were punctuated by asynchronous hiatuses of up to 30 ka in duration. Disparate zircon growth histories can result from localized thermal perturbations caused by mafic intrusions into a silicic reservoir. The crystal age heterogeneity at hand-sample scale requires considerable crystal transport and mixing. We propose that crystal mixing was achieved through buoyancy instabilities caused by mafic magma flow through crystal mush. A terminal pre-eruptive rejuvenation event was capable of mobilizing voluminous melts that erupted, but was too short (< 102–103 years) to result in extensive zircon growth. The contrasting, punctuated zircon histories argue against closed-system fractional crystallization models for silicic magmatism that require protracted cooling times following a mostly liquid starting condition.  相似文献   

18.
A suite of 23 basaltic to dacitic lavas erupted over the last 350 kyr from the Mount Adams volcanic field has been analyzed for U–Th isotope compositions to evaluate the roles of mantle versus crustal components during magma genesis. All of the lavas have (230Th/238U) > 1 and span a large range in (230Th/232Th) ratios, and most basalts have higher (230Th/232Th) ratios than andesites and dacites. Several of the lavas contain antecrysts (crystals of pre-existing material), yet internal U–Th mineral isochrons from six of seven lavas are indistinguishable from their eruption ages. This indicates a relatively brief period of time between crystal growth and eruption for most of the phenocrysts (olivine, clinopyroxene, plagioclase, magnetite) prior to eruption. One isochron gave a crystallization age that is ~ 20–25 ka older than its corresponding eruptive age, and is interpreted to reflect mixing of older and juvenile crystals or a protracted period of magma storage in the crust. Much of the eruptive volume since 350 ka consists of lavas that have small to moderate 230Th excesses (2–16%), which are likely inherited from melting of a garnet-bearing intraplate (“OIB-like”) mantle source. Following melt generation and subsequent migration through the upper mantle, most Mt. Adams magmas interacted with young, mafic lower crust, as indicated by 187Os/188Os ratios that are substantially more radiogenic than the mantle or those expected via mixing of subducted material and the mantle wedge. Moreover, Os–Th isotope variations suggest that unusually large 230Th excesses (25–48%) and high 187Os/188Os ratios in some peripheral lavas reflect assimilation of small degree partial melts of pre-Quaternary basement that had residual garnet or Al-rich clinopyroxene. Despite the isotopic evidence for lower crustal assimilation, these processes are not generally recorded in the erupted phenocrysts, indicating that the crystal record of the deep-level ‘cryptic’ processes has been decoupled from shallow-level crystallization.  相似文献   

19.
The uranium and thorium decay series nuclides in Mt. St. Helens effusives   总被引:1,自引:0,他引:1  
The concentrations of the radionuclides238U,230Th,226Ra,210Pb,210Po,232Th,228Ra and228Th and the abundances of major elements were determined in samples from all major eruptions of Mt. St. Helens from May 18, 1980 through June 21, 1981. During this time the effusives changed from plagioclase-phyric dacite to a more andesitic composition but the concentrations of U and Th series nuclides were measurably invariant. The average232Th/238U weight ratio in the rocks is 2.4 and the230Th/232Th activity ratio equals the238U/232Th activity ratio indicating no fractionation of U from Th during magma genesis.226Ra activity is in excess (~40% on average) of its parent230Th whereas228Ra is in radioactive equilibrium with its parent232Th, constraining the time of magma formation between 30 and 104 years prior to eruption. The210Pb/226Ra activity ratios in the samples average 1.0, with a 20% scatter on either side, but allowing for volatile210Pb loss at time of eruption excess210Pb over226Ra is inferred, indicating that the time of magma formation was within the last 150 years.210Po was virtually absent in the samples immediately after eruption, indicating its total loss by volatilization during eruption. The quantity of210Po volatilized during the May 18, 1980 event is estimated to be in the range of 300 Ci from the effusives and as much as 5000 Ci total including losses from heated slide material. The222Rn activity volatilized should have been comparable to the210Po activity released.  相似文献   

20.
A U-Pb-He double-dating method is applied to detrital zircons with core-rim structure from the Ganges River in order to determine average short- and long-term exhumation rates for the Himalayas. Long-term rates are calculated from the U/Pb ages of metamorphic rims of the grains that formed during the Himalayan orogeny and their crystallization temperatures, which are calculated from the Ti-in-zircon thermometer. Short-term rates are calculated from(U-Th)/He ages of the grains with appropriate closure temperatures. The results show that short-term rates for the Himalayas, which range from 0.70 ± 0.09 to 2.67 ± 0.40 km/Myr and average 1.75 ± 0.59(1±) km/Myr, are higher and more varied than the long-term rates, which range from 0.84 ± 0.16 to 1.85 ± 0.35 km/Myr and average 1.26 ± 0.25(1±) km/Myr. The differences between the long-term and short-term rates can be attributed to continuous exhumation of the host rocks in different mechanisms in continental collision orogen. The U/Pb ages of 44.0 ± 3.7 to 18.3 ± 0.5 Ma for the zircon rims indicate a protracted episode of ~25 Myr for regional metamorphism of the host rocks at deeper crust, whereas the(U-Th)/He ages of 42.2 ± 1.8 to 1.3 ± 0.2 Ma for the zircon grains represent a protracted period of ~40 Myr for exposure of the host rocks to shallower crustal level. In particular, the oldest(U-Th)/He ages of the zircon grains are close to the oldest U/Pb ages for the rims, indicating that some parcels of the rocks that contain zircons were rapidly exhumed from deep to shallow levels in the stage of collisional orogeny. On the other hand, some parcels of the rocks may have been carried upwards by thrust faults in the post-collisional stage. The parcels could be carried upwards by the thrust faults that steepen as they near the surface, or by transient movement faults so that areas of rapid exhumation became areas of slow exhumation and visa versa on a time scale of a few Myr in order to maintain the continuous exhumation. In this regard, the Ganges River must be preferentially sampling areas that are currently undergoing above average rates of uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号