首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two inverted echo sounders were maintained on coastal and offshore sides of the Kuroshio south of Japan from October 1993 to July 2004. Applying the gravest empirical mode method, we obtained a time series of geostrophic transport. Estimated transports generally agree well with geostrophic transports estimated from hydrography. Their agreement with the hydrographic transports is better than that of transports estimated from satellite altimetry data. The geostrophic transport is expressed as the surface transport per unit depth multiplied by the equivalent depth. The geostrophic transport varies mostly with the surface transport and fractionally with the equivalent depth. Seasonal variation of the geostrophic transport has a minimum in March and a maximum in September, with a range of about one fifth of the total transport.  相似文献   

2.
南海 18°N 断面 上的体积和热盐输运   总被引:2,自引:0,他引:2  
以2005—2008年4年中南海北部开放航次所获得的水文观测资料为基础,结合卫星高度计遥感资料,采用动力计算方法计算南海18°N断面的经向地转流,并与声学多普勒流速剖面仪(Acoustic Doppler Current Profilers,ADCP)走航观测资料进行对比,进而计算出通过南海18°N断面1000m以浅的各站位以及断面上总的经向地转体积、热、盐输运量。结果表明,2005—2008年南海北部开放航次期间18°N断面上的经向地转流呈相间带状分布,各站位经向地转流流速垂向分布和ADCP观测的大体一致。从卫星高度计获得的海面高度场可知,经向地转流流向的空间变化与海洋中尺度涡旋的活动密切相关。2005—2007年航次期间南海18°N断面上1000m以浅总的经向地转体积、热、盐输运均为南向输运,其3年的平均输运量分别为11.8Sv(1Sv=106m3.s 1)、0.38PW、418.8Gg.s 1;其年际间差别较大,经向地转体积、热、盐输运量均为2005年最大,2006年次之,2007年最小。2008年110°—117°E之间1000m以浅总的海水地转体积、热、盐输运量分别为7.3Sv、0.22PW、259.4Gg.s 1。  相似文献   

3.
4.
Wind-stress products supplied by satellite scatterometers carried the European Remote-sensing Satellite (ERS) and QuikSCAT (QSCAT), together with numerical weather predictions from the European Centre for Medium Range Weather Forecasting (ECMWF) and the National Centre for Environmental Prediction (NCEP) were used to estimate wind-driven transports of the North Pacific subtropical gyre. At 30°N, we compared the wind-driven transports with geostrophic transports calculated from World Ocean Database 2005. The wind-driven transports for QSCAT and NCEP are in good agreement with the geostrophic transport within reasonable error, except for a regional difference in the eastern part of the section. The difference in the eastern part suggests an anti-cyclonic deviation of the geostrophic transport, resulting from an anti-cyclonic anomalous flow in the surface layer. It is suggested that this anomalous flow is the Eastern Gyral, produced by the thermohaline process associated with the formation of the Eastern Subtropical Mode Water. To investigate the validity of QSCAT and NCEP data, we examined whether or not the Sverdrup transports for these products are consistent with the transport of the western boundary current estimated by past studies. The net southward transport, given by the sum of the Sverdrup transport for QSCAT and NCEP and the thermohaline transport, agrees well with the net northward transport of the western boundary current. From this result, together with the fact that the wind-driven transports for these products are in good agreement with the geostrophic transport, we conclude that the Sverdrup balance can hold in the North Pacific subtropical gyre.  相似文献   

5.
利用卫星测高、GRACE和GOCE资料估计全球海洋表面地转流   总被引:1,自引:1,他引:0  
重力恢复和气候试验GRACE(gravity recovery and climate experiment)卫星极大地提高了地球重力场的精度和分辨率,特别是中长波分量,联合卫星测高数据可获得全球海洋表面大尺度洋流循环。另外,新一代地球重力和海洋环流探测卫星GOCE(gravity field and steady-state ocean circulation explorer)于2009年3月成功发射,采用卫星重力梯度测量原理,对重力场的高频部分非常敏感,使其高分辨率监测全球海洋循环成为可能。本文利用1~7年GRACE观测数据确定的重力场模型和18个月GOCE观测数据确定的地球重力场模型GO_CONS_GCF_2_TIM_R3,联合卫星测高确定的平均海面高模型MSS_CNES_CLS_11,分别估计全球海洋表面地转流,并且与实测浮标数据结果进行比较。分析表明GOCE重力卫星确定的重力场模型具有更高的空间分辨率,能够确定高精度和高空间分辨率的全球海洋地转流,如墨西哥湾暖流的细节和特征,并且与实测浮标结果基本一致。而基于1~4年GRACE观测资料的模型不能很好估计全球地转流特征,基于7年GRACE观测资料的重力场模型ITG-Grace2010s确定的全球地转流的精度仍低于18个月GOCE观测数据确定的地球重力场模型GO_CONS_GCF_2_TIM_R3的结果,估计的全球地转流仍含有较大的噪声,不能很好地反应中小尺度地转流细节特征。并计算ITG_Grace2010s和GOCE_TIM3的稳态海面地形和全球平均地转流的内符合精度,结果显示,在全球范围内,GOCE_TIM3的稳态海面地形和全球平均地转流的精度都比ITG_Grace2010s结果的精度有着很大的改善,其中ITG_Grace2010s的稳态海面地形的精度为21.6cm,而GOCE_TIM3的结果则为7.45cm,ITG_Grace2010s的全球平均地转流的精度为40.7cm/s,而GOCE_TIM3的结果则为19.6cm/s。  相似文献   

6.
Satellite altimetry observations, including the upcoming Surface Water and Ocean Topography mission, provide snapshots of the global sea surface high anomaly field. The common practice in analyzing these surface elevation data is to convert them into surface velocity based on the geostrophic approximation. With increasing horizontal resolution in satellite observations, sea surface elevation data will contain many dynamical signals other than the geostrophic velocity. A new physical quantity, th...  相似文献   

7.
Upper ocean (above 750 m) temperature structure of the northwestern subtropical Atlantic, including the Gulf Stream and a recirculation gyre south of the Stream, is characterized using primarily bathythermograph (BT) data collected between 1950 and 2003. Geostrophic calculations, using mean temperature-salinity relationships to compute dynamic height, are used to estimate velocities and transports. The mean annual Gulf Stream transport at 72° W relative to 750 m, 36.1 Sv, is approximately equal to the sum of the transport of the Florida Current, 32.0 Sv, and a shallow recirculation gyre described by Wang and Koblinsky [Journal of Physical Oceanography 26 (1996) 2462-2479], 5.5 Sv. The annual cycle of geostrophic transport relative to 750 m at 72° W is in phase with both an earlier published annual cycle of transport relative to 2000 m derived from hydrographic observations and the annual cycle of Florida Current transport measured indirectly by a submarine cable (i.e., maximum transports are observed in the summer and minimum in the fall, early winter). However, simple Sverdrup dynamics are inadequate to explain these cycles as maximum Sverdrup transports extend from winter to summer, while observed transports are minimum (maximum) in fall/winter (summer). The annual cycles derived from the BT data of the size of the shallow southern recirculation gyre, Gulf Stream position and upper layer transport (relative to 300 m) are in phase (maximum size, northern position and transport in fall) and consistent with the WK results derived from altimetry. However, the shallower annual cycles are out of phase with the deeper signals (i.e., maximum for the former (latter) are observed in fall (summer)). Decadal signals after 1965 in Gulf Stream position, geostrophic transport relative to 450 m, and the size of a recirculation gyre south of the Stream are approximately in phase as observed for the annual signal. This gyre and the shallow WK gyre exhibit the same horizontal structure, however, the decadal signal propagates deeper into the water column (at least to 700 m). The eastern expansion and contraction of the gyre on decadal time-scales is correlated with propagating SST signals. The sampling implications of these findings are addressed.  相似文献   

8.
Changes in the sea surface heights (SSH) and geostrophic transports in the NE Pacific are examined during the 1997–1998 El Niño using altimeter data, sea level pressure (SLP) fields, proxy winds and satellite sea surface temperature (SST). Most of the signal occurs along the boundaries of the basin from Panama to the Alaska Peninsula. Changes in the SSH and alongshore transports along the boundaries are caused both by propagation of signals from the south (stronger between the equator and the Gulf of California) and by local and basin-scale winds (stronger between the Pacific Northwest and the Alaska Peninsula). Two periods of high SSH occur at the equator, May–July 1997 and October 1997–January 1998. The first coastal SSH signal moved quickly polewards to approximately 24°N in early June, then stalled and moved farther north during transient events in July–September. Large-scale wind forcing combined with the equatorial signals during the second period of high equatorial SSH (Fall 1997) to move the high SSH and poleward transports quickly around the Alaska Gyre. A connection between the boundary currents and the interior North Pacific developed as part of the large-scale response to the basin-scale winds, after changes in the boundaries. Decreases in anomalies of SSH and poleward transports began in January 1998 south of 40°N and in February 1998 farther north.  相似文献   

9.
Sea surface dynamic topography (SSDT) can be divided into temporal mean SSDT and fluctuation SSDT. The former is approximated with a climatological mean SSDT and the latter is derived from satellite altimetry data, to give an approximated total SSDT (called a composite SSDT). The method is applied to detecting fluctuations of the Kuroshio axis south of Japan using TOPEX/POSEIDON altimeter data from the first year mission in 1992–1993. The fluctuation SSDT averaged over a wide area south of Japan clearly shows an annual cycle with an amplitude of about 15 cm. Temporal changes of SSDT along a subsatellite track crossing the Kuroshio compare moderately well with those estimated from repeated hydrographic observations, although there is a discrepancy of unknown origin. The composite SSDT also compares well with SSDT estimated from the same hydrographic data. Horizontal distribution of the surface geostrophic velocity component normal to subsatellite tracks is derived every ten days from the composite SSDT. Most locations of estimated strong eastward geostrophic velocities coincide well with locations of the Kuroshio axis determined every 15 days fromin situ surface velocity measurements on various vessels; for example, a fairly large meander of the Kuroshio south of Honshu is clearly detected. It is concluded that the composite SSDT can be used reliably to detect fluctuations of the Kuroshio axis south of Japan.  相似文献   

10.
TOPEX/POSEIDON altimeter data are analyzed for the 8.5-year period November 1992 to May 2001 to investigate the sea surface height (SSH) and geostrophic velocity signatures of quasi-annual equatorially trapped Rossby waves in the Pacific. The latitudinal structures of SSH and both components of geostrophic velocity are found to be asymmetric about the equator across the entire Pacific with larger amplitude north of the equator. The westward phase speeds are estimated by several different methods to be in the range 0.5-0.6 m s−1. These observed characteristics are inconsistent with the classical theory for first vertical, first meridional mode equatorially trapped Rossby waves, which predicts a phase speed of about 0.9 m s−1 with latitudinally symmetric structures of SSH and zonal velocity and antisymmetric structure of meridional velocity. The observations are even less consistent with the latitudinal structures of SSH and geostrophic velocity components for other modes of the classical theory.The latitudinal asymmetries deduced here have also been consistently observed in past analyses of subsurface thermal data and altimeter data and have been variously attributed to sampling errors in the observational data, a superposition of multiple meridional Rossby wave modes, asymmetric forcing by the wind, and forcing by cross-equatorial southerly winds in the eastern Pacific. We propose a different mechanism to account for the observed asymmetric latitudinal structure of low-frequency equatorial Rossby waves. From the free-wave solutions of a simple 1.5-layer model, it is shown that meridional shears in the mean equatorial current system significantly alter the potential vorticity gradient in the central and eastern tropical Pacific. The observed asymmetric structures of sea surface height and geostrophic velocity components are found to be a natural consequence of the shear modification of the potential vorticity gradient. The mean currents also reduce the predicted westward phase speed of first meridional mode Rossby waves, improving consistency with the observations.  相似文献   

11.
沙埕港湾口断面潮流及余流特征分析   总被引:1,自引:0,他引:1  
基于对沙埕港湾口断面的连续走航观测资料,成功构建了沿走航断面的10个站点的连续海流序列,并分析了潮流、余流、潮通量等水文要素。分析结果表明,沙埕港湾口水道潮流类型为正规半日潮流,涨潮最先出现在中下层而落潮最先出现在上层,涨(落)潮转流相差约为30min。水道内潮流为往复流,M2和S2分潮流流速较大,倾角基本沿水道主轴方向。沙埕港湾口断面余流呈2层结构,10m以浅基本为东南向余流流出湾口,核心位于湾口断面南侧。10m以深多为西北向流入湾内,入流核心位于湾口断面中部的底层区域。对潮通量的计算表明,通过湾口进入沙埕港的潮通量约为1.63×108m3。  相似文献   

12.
On geostrophic reference levels in the Bering Sea basin   总被引:1,自引:0,他引:1  
Various data sets in the deep Bering Sea are examined in an effort to find suitable reference levels for geostrophic transport computations. Because of the lack of other data, classical methods are used: mainly vertical structure of differences in geopotential (method of Defant) and mass conservation. In the western Bering Sea, maximum transports are usually, but not always, obtained by using reference levels near the bottom. In the central region, there is considerable variability, both spatial and temporal, in the depth of the most suitable reference level, which varies from 500 to at least 1500 db. The variations seem to be related to depth of inflow in the passes, to near-surface salinity gradients, and to features such as upward movement of water or well-developed eddies.  相似文献   

13.
We discussed the detailed current structures in the Eastern Channel of the Tsushima Strait, using four sets of acoustic Doppler current profiler (ADCP) data, which were taken by the quadrireciprocal method (Katoh, 1988), for removing tidal currents, in summers of 1987–1989. In the Eastern Channel, diurnally averaged currents balanced almost geostrophically. In the upper layer of the deepest part of the Eastern Channel, there existed a current core which corresponded to one branch of the Tsushima Current. The current direction in this core was between NE and ENE in all observations but the magnitude of velocity in 1987 differed largely from that in 1988. Another current core with lower velocities was found near the north coast of Kyushu. Near the bottom at the deepest part of the Eastern Channel, the velocity was more or less 0.3 kt (15 cm s–1). Along the east coast of Tsushima and in waters northeast of it, countercurrents were observed. The continuity of these countercurrents was interpreted as follows: A part of the current flowing from the Western Channel of the Tsushima Strait into the Japan Sea turns clockwise in waters northeast of Tsushima, and flows southwestward along the east coast of Tsushima. The southwestward current along Tsushima was correlated with the northeastward current in the central part of the Eastern Channel. The transport through the Eastern Channel was between 0.59 and 1.30 Sv (1 Sv=106 m3s–1). The baroclinic component, which was defined as the transport based on calculations of geostrophic current with assuming zero velocity near the bottom, was very small.  相似文献   

14.
Theoretically, the geostrophic approximation holds for the low-frequency flow field, but no detailed examination has been done on how well the estimated geostrophic velocity corresponds with the observed velocity. Intensive surveys were carried out during 1993–1995 in the Kuroshio and its recirculation regions south of Shikoku, Japan, including repeated hydrographic surveys and direct current measurements at nominal depths of 700, 1500 and 3000 m. For these depth intervals, vertical differences of estimated geostrophic velocity are compared with those of observed velocity. For the intermediate layer (between 700 and 1500 m depths), the slope of the regression line is 0.99, correlation coefficient is 0.98, and the root-mean-square of difference from geostrophic balance is 2.8 cm/s which is close to the estimated error of 2.1 cm/s. For the deep layer (between 1500 and 3000 m depths), the corresponding values are 0.82, 0.93, 1.2 cm/s and 2.0 cm/s, respectively. The results indicate that the estimated geostrophic velocity compares well with the observed velocity in these regions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Efficient monitoring of large-scale current systems for climate research requires the development of new techniques to estimate ocean transports. Here, a methodology for continuous estimation of dynamic height profiles and geostrophic currents from moored temperature sensors is presented. The technique is applied to moorings deployed in the Atlantic Deep Western Boundary Current at 26.5°N, off Abaco, the Bahamas (WOCE ACM-1 array). Relative geostrophic currents are referenced using bottom pressure sensors and available shipboard direct velocity (lowered-ADCP) sections over the period of the deployment, to obtain a time series of absolute volume transport. Comparison with direct velocity measurements from a complete array of current meters shows good agreement for the mean transport and its variablity on time scales longer than 10 days, but larger variability in the current meter derived transport at time scales shorter than 10 days. A rigorous error analysis assesses the contributions of various error sources in the geostrophic as well as direct transport estimates. Low-frequency drift of the bottom pressure sensors is found to be the largest error source in the geostrophic transport estimates and recommendations for improvement of the technique and related measurement technologies are made.  相似文献   

16.
基于船载ADCP观测对罗源湾湾口断面潮流及余流的分析   总被引:2,自引:1,他引:1  
基于对罗源湾可门水道的25 h连续走航ADCP观测,成功构建了沿走航断面共12个站位的连续海流时间序列,并对这些站位的潮流、余流以及潮通量等进行了分析。结果表明可门水道内的潮流为正规半日潮流,驻波性质明显,涨潮首先出现在水道中下层而退潮则首先发生在水道上层。水道内的潮流为往复流,水道南部M2分潮流流速较大,并且其倾角自北向南逐渐增加。此外,水道两端的浅水区域内浅水分潮M4振幅较显著。可门水道内余流呈现出两层结构,20 m以浅余流沿东北向流出海湾,并且出流的核心位置偏南,而20 m以深的余流沿西南向流入湾内,入流的流核位于偏北的近底层区域。对潮通量的积分计算表明通过可门水道进入罗源湾的潮通量约为4.81×108 m3。  相似文献   

17.
由于卫星高度计数据分辨率高、观测范围广的特点,我们使用该数据开展了黑潮流的研究。在之前的研究中,卫星绝对地转流都被用于对黑潮流域的表层流场的时空变化特征进行研究,并采用了一些探测方法提取了黑潮流轴和流路。然而,海面绝对地转流是由绝对动力地形估计得到,应该被当做实际流场的地转分量,在实际应用中并不能代表真实流场。在本研究中,建立了气候态绝对地转流与网格平均的漂流浮标流场间的数学校验关系,以此对卫星绝对地转流场进行修正,即便这两种数据的性质存在些许偏差。因此,基于主成分探测法,修正后的卫星绝对地转流被用于探测黑潮流轴和流路。对比结果表明,由修正后的卫星地转流场探测得到的黑潮流轴和流路均要好于地转流和表层流估计结果。修正后的地转流有助于开展更加准确的黑潮流轴和流路的逐日探测。  相似文献   

18.
The characteristics of the T/S structures, water mass exchange and deep circulation in the Andaman Sea are investigated based on the simulation from a high-resolution general circulation model(MITgcm). The results show that, below 1 000 m, the water mass is saltier, warmer and more homogeneous in the Andaman Sea than that in the Bay of Bengal, attributing to the strong vertical mixing at the depth of ~1 800 m. The water mass exchange between the Andaman Sea and the Bay of Bengal goes through three major channels, which manifests itself as follows: the northern channel(Preparis Channel) is the main passage of water mass transport from the Bay of Bengal to the Andaman Sea, whereas the Middle Channel(the south of Andaman Islands and the north of Nicobar Islands) has an opposite transport; the southern channel(Great Channel) features with a four-layer water exchange which results in the least net transport among the three channels; all the transports through the three channels have an intra-annual variation with a period of half a year. At 1 000-m depth, the entire Andaman Sea is occupied by a cyclonic circulation in January and July while by an anticyclonic one in April and October. The semiannual cycle found in both the deep circulation and water mass exchange is likely associated with the downwelling eastward-propagating Kelvin waves induced by the semiannual westerly component in the equatorial Indian Ocean during intermonsoon seasons.  相似文献   

19.
Two very high-frequency radars (VHFRs), operating in the southern Channel Isles region (English Channel) in February–March 2003, provided a continuous 27-day long dataset of surface currents at 2 km resolution over an area extending approximately 20 km offshore. The tidal range in the region of study is one of the highest in the world and the coastal circulation is completely dominated by tides. The radar data resolve two modes which account for 97% of the variability of the surface current velocities, with the major contribution of the first mode. This mode accounts for oscillating tidal currents whereas the second mode represents motions emerging from the interaction of tidal currents with capes and islands (eddy in the vicinity of the Point of Grouin and jet south of Chausey). A fortnightly modulation of the modal amplitudes causes the exceptional (more than 600%) variability of currents which is well captured by the VHFR observations. The radar data revealed that tidal circulation in the region is flood-dominated with a strong asymmetry of current velocity curve. Wind events and fortnightly variability affect the course of tidal cycle by modifying the magnitude and duration of ebb and flood. In addition to expected features of coastal circulation (tidally dominated flow, eddies) and high wind-current coupling, the residual currents revealed a strong cross-shore structure in the mean and a significant variability which has the same order of magnitude.  相似文献   

20.
We examine results from a cruise in May 1997. CTD casts to near the bottom were made south of the Aleutian Islands, across Amchitka Pass, and north of the islands. We computed a westward geostrophic speed of 123 cm s–1 at 173.5°W in the Alaskan Stream. The computed volume transport there, referred to the bottom, was 25×106m3s–1. On other similar sections, transports were 8–15 × 106 m3s–1. Various complex variations in geopotential height along the Stream apparently altered the cross-stream gradients, and hence the transports. Rotational tendencies were also present. Northward inflow through Amchitka Pass was quite strong (6 × 106 m3s–1). Data north of the islands supported the existence of a zero-velocity reference level of variable depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号