首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
根据中国近海高分辨率 ( 1 / 6°)环流模式的模拟结果 ,计算了南沙邻近海域与外海之间的海水体积、热量和盐量输运及其对印度尼西亚贯穿流的贡献。研究海域为 0°— 1 4°N的整个南海南部海域。计算得出 ,穿过研究海域流向印度尼西亚海域 ,最终流向印度洋的年平均体积、热量和盐量输运分别为 5 .2Sv( 1Sv =1× 1 0 6m3·s- 1 )、0 .5 7PW和 1 84Gg·s- 1 ,大约占印度尼西亚贯穿流相应输运量的 1 / 4。这一结果表明南海是全球大传送带这一全球海洋最主要热盐环流系统的重要通道之一。从南海流向印度尼西亚海域的通道以卡里马塔海峡为最主要 ,以下依次为巴拉巴克海峡、民都洛海峡和马六甲海峡。大的南向通量主要发生在冬、秋季 ,春末夏初总的通量向北。计算还得出输入本海区的热输运量比输出少 0 .0 64PW ,由这一结果推得 ,通过海 -气界面由大气进入海洋的年平均净热通量约为 30W·m- 2 。  相似文献   

2.
内潮对吕宋海峡地转流动力计算的影响   总被引:1,自引:0,他引:1  
利用2008年8~9月份吕宋海峡121°E断面上19.5°N~21°N之间4个连续站的CTD资料,讨论了内潮引起的温、盐剖面扰动对地转流诊断计算的影响,指出:在吕宋海峡,内潮引起的温、盐剖面扰动对地转流诊断计算的干扰不可忽略。因此,地转流诊断计算必须剔除温、盐剖面中的"内潮噪声"。另外,本文根据4个连续站时间平均后的温、盐剖面,通过动力计算法得到了吕宋海峡121°E断面上的地转流场,得出结论如下:吕宋海峡地转流速度较大部分多位于350 m以浅,流速最大值出现在表层;黑潮入侵南海主要发生于19.8°N~21°N的上层;在19.5°N~21°N之间,50~1 700 m深度范围内,海水体积通量呈现"上进下出"的垂向结构,350 m以浅为入流,流量约为2.6 Sv(1 Sv=1×106m3.s-1),350 m以深为出流,流量约为3.1 Sv。同期观测所得121°E断面上的盐度分布验证了本文所得地转流场的合理性。  相似文献   

3.
基于2005年至2009年、2011年和2013年各年九月份南海开放航次获取的东北部120°E断面的水文观测资料,运用了地转流诊断和模态分解两种方法,研究了该断面流场结构和体积输运的年际变化特征。2005年、2006年、2007年和2013年流场呈显著斜压特征,断面上、下层流速方向相反;而2008、2009年和2011流场垂向变化不明显,呈现准正压结构。断面体积输运沿深度分布呈现三种方式:一致向西(2005年、2007年和2011年),上西下东(2008年和2013年)和上东下西(2006年和2009年)。断面净体积输运亦有显著年际变化,在2005年出现西向最大-11.2Sv,在2013年出现东向最大9.1Sv,而在2009年仅为西向-1.2Sv。模态分解表明,准正压结构的年份,流场主要被正压模态控制,但第一斜压亦不可忽略;而斜压结构的年份,流场由正压模和第一斜压模态共同主导。  相似文献   

4.
基于2004—2013年的南海北部开放航次数据和1980—2010年Simple Ocean Data Assimilation(SODA)数据,发现南海北部次表层水体盐度在2004—2005年间盐度显著增大,相比于气候态均值分别增加了0.1和0.14,而且温盐特征曲线显示盐度增大的现象主要发生在150m以浅。2004年净淡水通量仅略低于气候态均值,2005年净淡水通量则明显高于气候态均值,因此净淡水通量不会是导致此高盐事件的有利因素。我们进一步通过块体简化盐度收支方程,定量评估盐度收支方程里中平流输运项(包括跨海盆经吕宋海峡的平流输运项和南海海盆内部南北海盆之间的平流输运项)的贡献。发现在2004年,通过吕宋海峡进入南海北部的盐含量输运显著大于气候态均值,是导致南海北部上层水体盐度迅速增大的主要原因。为探究2005年南海北部盐度持续增强的原因,我们进一步比较2004年和2005年的平流项演变,发现相对于2004年,虽然2005年吕宋海峡盐含量输运略低于气候态均值,但南海内部南海南北海盆间(通过18°N断面进入南海北部)的盐含量输运增强,即在2005年,海盆内部经向平流盐输运的贡献是促使南海北部上层盐度继续增强的关键因素。  相似文献   

5.
根据2001年3月份南海东北部航次调查温、盐资料,分析了2001年冬末春初南海东北部温、盐结构和环流的特征.分析结果表明:观测期间南海东北部环流主要受一次海盆尺度气旋型冷环流支配,冷环流呈现双核结构,垂向尺度接近1000 m.吕宋海峡内侧断面的水交换在600 m以浅海水流入南海,在断面南部(20°N以南)中层和深层有流出,断面法向地转流向西净输运量为6.9×106m3/s;直接的黑潮入侵不超过120.5°E,但有部分的黑潮水沿陆坡达到台湾岛西南部海域,并更有一部分逸入东沙岛以西海域,与南海水混合变性.  相似文献   

6.
基于2004-2012年8-9月份南海北部开放航次期间18°N断面的温盐深仪(Conductance Temperature Depth,CTD)观测资料,分析了夏末秋初沿18°N断面的温度、盐度和混合层结构特征及其影响因素。研究发现:南海18°N断面的温度、盐度和混合层特征具有显著的年际变化,并且混合层的深度和其倾斜程度与风速及风驱动的Ekman平流有关,而所有航次18°N断面东侧均出现等温线、等盐线下凹现象,这与夏末秋初吕宋岛西侧海域存在一个反气旋式涡旋活动有关。  相似文献   

7.
2009-2010年冬季南海东北部中尺度过程观测   总被引:2,自引:1,他引:1  
根据南海北部陆架陆坡海域2009-2010年冬季航次的CTD调查资料,发现西北太平洋水在上层通过吕宋海峡入侵南海,其对南海东北部上层水体温盐性质的影响自东向西呈减弱趋势,影响范围可达114°E附近。入侵过程中受东北部海域反 气旋式涡旋(观测期间,其中心位于20.75°N,118°E附近) 的影响,海水的垂向和水平结构发生了很大变化,特别是涡旋中心区域,上层暖水深厚,混合层和盐度极大值层显著深于周边海域。该暖涡在地转流场、航载ADCP观测海流及卫星高度计资料中均得到了证实。暖涡的存在还显著影响了海水化学要素的空间分布,暖涡引起的海水辐聚将上层溶解氧含量较高的水体向下输运,使次表层的暖涡中心呈现高溶解氧的分布特征。  相似文献   

8.
吕宋海峡120°E断面水交换特征   总被引:5,自引:0,他引:5  
利用2007年7~8月吕宋海峡120°E断面(18.5°N~21.5°N)CTD观测数据,分析了该断面的温度、盐度和密度分布特征,并用动力计箅方法计算了断面的流速,得到了通过该断面的海水体积通量.计算结果显示,通过断面的海水主要由南海向太平洋输送,总的交换量为3.15 Sv.19°30'N~20°30'N之间,南海水通过吕宋海峡进入太平洋,而19°30'N以南和20°30'N以北至21°30'N之间.海水由太平洋进入南海.此外,流出吕宋海峡的表层流速最大可达1.3 m/s,流入南海的表层流速最大可达60 cm/s,位于19°30'N以南.  相似文献   

9.
利用Argo浮标资料分析横跨吕宋海峡20.5°N断面的水文特征   总被引:2,自引:0,他引:2  
黄志达  胡建宇 《台湾海峡》2010,29(4):539-546
基于Argo浮标资料,分析了一条横跨南海北部、吕宋海峡和西太平洋(20.5°N,114°~130°E)断面的海水温度、盐度的分布特征.其结果表明:Argo剖面资料得到的2008年秋季20.5°N断面海水的温度、盐度分布态势与气候态秋季的分布基本一致,主要差异在于南海次表层水的盐度极大值和西太平洋次表层水的盐度极大值,2008年秋季二者均比气候态秋季的低0.1左右.通过动力计算(选取1 200 m为速度零面)表明:Argo浮标剖面资料与融合的卫星高度计产品得到的20.5°N,117.5°~124.5°E断面的表层地转流北分量的分布比较吻合;吕宋海峡中部(20°~21°N)的黑潮主轴大致位于121.5°E附近,其东边界可达123°E,而西边界仅限于121°E以西,其可能原因是该季节黑潮的左侧存在着一个气旋式环流,阻碍了黑潮西进;黑潮在20.5°N断面的体积流量为27×106m3/s左右,最大流速约为55 cm/s,出现在70 m层左右.  相似文献   

10.
2000年8月南海中部与南部海洋温、盐与环流特征   总被引:11,自引:2,他引:11  
根据2000年8—9月份南海中部与南部航次的温、盐资料,采用P—矢量诊断方法,结合ADCP测流资料和同期伪风应力资料以及TOPEX/Poseidon高度计资料,研究了2000年夏季风持续强迫之后南海大尺度环流与中尺度涡旋的空间结构。结果表明,南海夏季温度和盐度水平分布随深度有显著的变化:中层(250—400m左右)温、盐水平分布与其它各层的温度和盐度分布相比有很大的差异。用诊断方法计算得到的环流场与用TOPEX/Poseidon海面高度计资料计算得到的地转流场比较一致,即流场内部有多个中尺度的涡旋,主要有越南东南外海反气旋涡、中沙群岛东南反气旋涡以及南沙群岛东北角的气旋涡等,这说明南海中部与南部盛夏环流具有较强的地转分量和显著的多涡结构,并且这些中尺度涡在垂向上存在速度场的切变。  相似文献   

11.
热带西太平洋潜流模拟:(Ⅱ)潜流结构与输运及其季节变化   总被引:1,自引:0,他引:1  
通过分析积分30 a的准全球HYCOM(HYbrid Coordinate Occan Model)模式结果,研究了热带西太平洋潜流结构与输运及其季节变化.在年平均状态下,新几内亚沿岸潜流流核位于约175 m、2.8°S附近,最大流速超过45 cm/s,约110 km宽;棉兰老潜流流核位于离岸处,约400~800 m深度、127.5°~128.5°E范围,最大速度超过3 cm/s.在季节时间尺度上,新几内亚沿岸潜流流核位置比较稳定,海流强度与体积输运表现出夏秋季强、冬春季弱的季节变化特征;棉兰老潜流流核位置、流速强度都具有较大的时空变化特征,棉兰老潜流的体积输运约2.5~11.5Sv,其季节变化规律不够明显,2~7月份,体积输运较弱,8~1月份,体积输运较强.  相似文献   

12.
黑潮热输运对我国沿海区域气候变化及海洋生态环境具有重要影响。基于JCOPE2(Japan Coastal OceanPredictabilityExperiment2)模式1993—2016年的高分辨率数值模拟结果,计算了通过台湾岛以东24°N KET(Kuroshio East of Taiwan Island)断面的黑潮热输运,分析了其季节及年际变化特征,结合ONI指数(Oceanic Nino Index)探讨了其与ENSO(厄尔尼诺-南方涛动)事件的关系。研究结果表明, KET断面黑潮热输运具有显著的季节变化,春夏季较大,秋冬季偏小;年均值为1.98 PW(1 PW=10~(15) W),标准差为0.18 PW,热输运强年为1996—1997年和2015年,热输运弱年为2000年, 2002年和2013年。超强ENSO过程对黑潮热输运有显著影响。受超强厄尔尼诺事件影响,台湾岛以东黑潮热输运明显增加,热输运极大值超前ONI指数极大值约5~10个月。利用方差分析得到流速方差项对KET断面黑潮热输运总时域方差贡献最大,解释了热输运总方差最大值的77%,其次是温度与流速协方差项以及温度方差项,分别解释了热输运总方差的15%和6%。  相似文献   

13.
利用SODA同化数据、卫星高度计反演的地转流数据及ICOADS风场资料,刻画了南海西边界流场的三维结构,并着重探讨了中南半岛附近的南海西边界流年际变化特征与ENSO循环的关系.研究结果表明:以经向流速10cm/s界定中南半岛西边界流的核心边界,按此标准其核心区水平方向上为中南半岛沿岸至111°E附近,垂向为200 m以浅.分析发现12.25°N断面西边界流流量的年际变化与ENSO呈显著正相关,流量滞后ENSO 5个月时相关系数最高,达0.38(超过99%置信度).受ENSO期间季风变异影响,和正常年份相比,合成El Nino事件的发展期(7月)-强盛期(12月)-消亡期(次年7月),中南半岛近岸的西边界流呈现增强-减弱-减弱态势;而合成La Nina事件的发展期(7月)-强盛期(12月)-消亡期(次年7月),西边界流却呈现减弱-增强-南强北弱的态势;综上,南海西边界流的年际变化,ENSO是主要调控因素.  相似文献   

14.
利用高分辨率的OFES数据,通过对中南半岛和海南岛沿岸比较有代表性的几个断面进行流速剖面分析和体积输送量计算,初步探讨了南海西边界流的时空特征.结果显示南海西边界流的季节变化特征明显:夏季向北流,冬季向南流,且冬季强于夏季.在体积输送大小上,越南沿岸流的体积输送量大小为(7.4±7.0)Sv,紧邻海南岛的沿岸流大小仅为(0.57±0.5)Sv,112.0°E以东的海南沿岸西边界流体积输送大小约为(4.8±1.9)Sv,并且常年向南流动.夏季的南海西边界流在北上到达中南半岛的东南部以后偏离岸线向东流动.随着夏季风的盛行,离岸流的流速变大,主轴发生了明显的摆动,由14.0°N移动到了10.0°N.离岸流对西边界流有着显著的影响作用.  相似文献   

15.
吕宋海峡水交换季节变化的数值研究   总被引:4,自引:0,他引:4  
提要利用POM(Princeton Ocean Model)对吕宋海峡附近的环流情况进行数值模拟,结果表明,吕宋海峡净流量季节变化明显,除5月和6月为东向净流外,全年自7月至翌年4月皆为西向净流。7月至11月净流量由1.6Sv(1Sv=1×106m3/s)持续增加至14Sv,12月至翌年4月净流量从13.8Sv持续减小至3.1Sv。年平均值为5.7Sv。500m以上,秋、冬季有明显的黑潮分支进入南海,而在春、夏季黑潮南海分支消失或者较弱。在500m以下,黑潮位置由于北赤道流分岔位置的变化而发生南北移动,从而影响黑潮深层入侵南海。作者以保持与表层流速方向相一致的最大深度为界将流场分为上下两层,上层西向(入)流区域占据吕宋海峡南部、中部,秋、冬季范围最大,夏季向中部收缩,其深度空间分布呈东浅西深结构,在吕宋海峡入口处,入流深度呈南北浅中间深的结构。上层东向(出)流主要分布在海峡北部,夏季向南部扩展,范围最大。120.75°E断面除9月和10月外,下层净输运量与上层反方向。9月和10月上、下层净输运量皆为西向。上层年平均净流量为?7.6Sv(这里"?"表示净流量向西,下同),下层为1.8Sv。上层出入流深度随季节上下浮动范围可达数百米,海峡中部入、出流最深可达1800m。  相似文献   

16.
近年来厄尔尼诺期间北赤道流输运的年际变化   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究近年来厄尔尼诺期间北赤道流输运的年际变化,本文利用海洋客观分析数据MOAA GPV(Grid Point Value of the Monthly Objective Analysis)以及P-vector方法计算了北太平洋绝对地转流,探讨了2001~2013年期间厄尔尼诺与北赤道流输运之间的关系。在此期间发生的4次厄尔尼诺事件中,北赤道流输运在2002~2003、2006~2007、2009~2010年的厄尔尼诺成熟期都出现了明显的增强,但是在2004~2005年的厄尔尼诺成熟期并没有明显的增强。进一步分析发现,在2002~2003年、2006~2007年、2009~2010年的厄尔尼诺成熟期,10°N以南的热带西北太平洋区域出现了负的海面高度异常和气旋式环流异常,这主要是由热带环流区域出现的西风异常和正的Ekman抽吸通过Rossby波西传到热带西太平洋区域所致;但是在2004~2005年厄尔尼诺成熟期,海面温度异常的分布明显不同,西风异常和正的Ekman抽吸异常明显北移,导致负的海面高度异常和气旋式环流异常出现在了10°N以北的西北太平洋区域,使得北赤道流输运在2004~2005年的厄尔尼诺成熟期没有明显的增强。  相似文献   

17.
利用11年高分辨率的(OGCM for the Earth Simulator,OFES)模式数据,计算南海涡致热输运(EHT),分析其时空变化特征。并利用卫星高度计数据验证OFES模式模拟南海涡致热输运的可靠性。研究结果表明,南海涡致热输运高值区主要分布在西边界流区,在南海北部和越南东南条带状区域,沿着中尺度涡运动路径,北部条带为向极输运,南部条带为向赤道输运,最大值达到了180MW/m。两高值区中间输运很小,沿着2500m等深线,为涡中心运动路径。南海中部涡致热输运较小。无论暖涡、冷涡,产生的致热输运均为顺时针方向。南海涡致热输运也存在明显的季节和年际变化。越南东南秋季输运最大,春冬季次之,夏季最小;南海北部则是春冬季最大,夏季最小。而在年际上,越南东南在2003、2007、2011年较大,南海北部则在2004、2007、2010年较大。  相似文献   

18.
2011年夏季南海北部海区水团分析   总被引:6,自引:0,他引:6       下载免费PDF全文
根据2011年8月19日至9月12日南海北部开放航次的温、盐资料,采用模糊聚类分析方法,结合8、9月份的卫星高度计资料,研究了2011年夏季南海北部海区水团的特征和分布状况。在垂直方向上将南海北部水团划分为5类:近岸混合水团、南海表层水团、南海次表层水团、南海中层水团和南海深层水团,并对南海各个水团的分布,温、盐特性进行了细致的分析。结果显示,2011年夏季有黑潮水入侵南海,入侵范围止于119°E。结合卫星高度计资料反演的地转流场发现,流场内部有多个中尺度涡,主要包括东沙群岛东侧和吕宋海峡东侧的反气旋涡,以及东沙群岛南端的气旋涡,说明2011年夏季南海北部环流具有显著的多涡结构,并且该多涡结构对水团的垂向分布及黑潮入侵范围产生了一定影响。  相似文献   

19.
根据"东方红2"于2011年9月在南海西南部11°N~15°N、111°E~114°E海域测得的CTD资料及据此的地转流计算结果,结合南海的海流数值计算结果的对比分析,得出南海西南部海盆附近水域中尺度涡的基本分布规律及其水文特征:(1)以12°N~13°N附近宽约100km的条带作为分界,其北部是气旋式运动,南部是反气旋式运动。(2)气旋涡中心产生上升流,底层水上升,中心密度大。表层表现为低温高盐高密特征;200m层表现为低温低盐高密特征;1 000m层则表现为低温高盐高密特征。(3)在反气旋涡中心产生下降流,海水密度小。表层表现为高温低盐低密特征;200m层表现为高温高盐低密特征;1 000m层则表现为高温低盐低密特征。(4)在8~9月,上述北气旋、南反气旋的分布流态基本不变;(5)季风的影响是因素之一,而地形影响更是调查区域双涡旋流动结构的重要动力机制。  相似文献   

20.
本文利用日本气象厅在137°E断面获得的水温和盐度长期观测资料,分析了该断面温度场和盐度场的时空特征.结果表明,137°E断面的温度场和盐度场都存在着明显的季节差异和年际变化.冬季,温度场变化的关键区位于3°~18°N的300m以浅海域,而盐度场变化的关键区则位于18°~34°N的300m以浅海域.夏季,温度场变化的关键区位于3°~16°N的300m以浅海域,而盐度场则有两个关键区,分别位于3°~18°N的200m以浅海域和24°~34°N的300m以浅海域.温度场的年际变化与ENSO循环相联系,而盐度场的年际变化则比较复杂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号