首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of chlorophylla and photosynthetic characterestics of phytoplankters were investigated along 155°W between 50°N and 15°S during the KH-69-4 cruise of the R. V. Hakuh Maru (Aug. 12–Nov. 13, 1969). High concentrations of chlorophylla (more than 0.2 mg Chla/m3) were observed above the depths of 150 m at all stations except in 17°N, 5°S and 15°S. North of 20°N, the depths of chlorophyll accumulation shifted from near the surface to 50–100 m with southwards. In the equatorial region, chlorophyll accumulation centered at a depth of about 70 m and ranged vertically between 10 and 150 m. In all cases in the present study area, chlorophyll accumulation occurred within the euphotic zone (above the depth corresponding to 1% of the surface illumination), and except in the subarctic and some equatorial waters, this was usually prevalent in the lower half of the euphotic zone.The photosynthetic activities (initial slope of P vs I curve) of samples from the depths of chlorophyll accumulation were similar to, or lower than, those of shallow samples from the depths of upper half of the euphotic zone. At the depths of chlorophyll accumulation, calculatedin situ photosynthesis was high in the central Pacific and equatorial waters but low in the subarctic waters.  相似文献   

2.
Hydrographic data collected aboard R. V. Anton Bruun along 65°E between 18°N and 42°S from 17 May to 4 July 1964 are used to investigate water characteristics and current structure in the upper 500 m in the Indian Ocean. The water characteristics indicate the occurrence of three main water masses,viz., warm, saltier, low-oxyty and nutrient-rich Arabian Sea Surface Water, relatively fresh and high-oxyty Equatorial Indian Ocean Water, and more saline, high-oxyty and nutrient-poor Tropical Water of the South Indian Ocean. The recently discovered South Equatorial Countercurrent and Subtropical Countercurrent (renamed Tropical Countercurrent, at the suggestion of Dr. R. B.Montgomery) are observed in the current structure at 13°S and 22°–26°S respectively, and these could also be identified on the vertical sections of temperature, thermosteric anomaly and salinity. Contrary to the existing concept, the North Equatorial Current continues to be present even after the onset of the southwest monsoon. The Equatorial Undercurrent could not be traced in the Indian Ocean during this period.  相似文献   

3.
During the EPOS leg 2 cruise (European Polarstern Study, November 1988–January 1989), the production rate of biogenic silica in the euphotic zone was measured by the 30Si method at stations in the Scotia and Weddell Seas.The highest integrated production rates were observed in the Scotia Sea (range: 11.2–20.6 mmol Si m−2 day−1), the marginal ice zone of the Weddell Sea exhibiting somewhat lower values (range: 6.0–20.0 mmol Si m−2day−1).Our results demonstrate that as far as biogenic silica production is concerned the marginal ice zone of the Weddell Sea is considerably less productive than that of the Ross Sea. Our results also indicate that the water of the Antarctic Circumpolar Current (ACC) could be more productive in late spring and early summer than at the beginning of spring. Possible reasons for the differences among the three subsystems (Ross Sea, Weddell Sea and ACC) are discussed.  相似文献   

4.
The vertical distribution of reactive mercury has been measured at two stations in the eastern North Atlantic and one station in the southeast Atlantic in conjunction with the IOC Open Ocean Baseline Survey. The average concentrations of reactive Hg in vertical profiles ranged from 0.70 to 1.07 pM with the highest values found at the northeast Atlantic stations and the lowest at the southeast station. No significant concentration gradients were found below the surface mixed layer at the two stations in the eastern North Atlantic. At station 7, in the southeast Atlantic, an increase in reactive Hg was noted in the water adjacent to the mixed layer (35–200 m) which was coincident with an oxygen depletion, down to 20% saturation at 200 m. The concentration of reactive Hg in the North Atlantic Deep Water (0.48–1.34 pM), the Antarctic Intermediate Water (0.47 pM), the Antarctic Bottom Water (0.67–1.25 pM), and the Mediterranean Outflow Water (0.83–1.06 pM) were noted. The trends in Hg concentration in the water masses between stations showed the concentration decreasing with distance from the water mass source except for Hg in the Antarctic Bottom Water. The increase noted in this water mass was attributed to mixing with North Atlantic Deep Water and or release from bottom sediments.  相似文献   

5.
Dissolved and particulate samples were collected to study the distribution of thorium isotopes (234Th, 232Th and 230Th) in the water column of the Indian sector of the Southern Ocean (from 42°S to 47°S and from 60°E to 66°E, north of the Polar Front) during Austral summer 1999. Vertical profiles of excess 230Th (230Thxs) increases linearly with depth in surface water (0–100 m) and a model was applied to estimate a residence time relative to the thorium scavenging (τscav). Low τscav in the Polar Front Zone (PFZ) are found, compared to those estimated in the Subtropical Front Zone (STZ). Changes in particle composition between the PFZ and STZ could influence the 230Thxs scavenging efficiency and explain this difference. An innovative coupling between 234Th and 230Thxs was then used to simultaneously constrain the settling velocities of small (0.6–60 μm) and large (above 60 μm) particles. Although the different hydrological and biogeochemical regimes visited during the ANTARES IV cruise did not explain the spatial variation of sinking velocity estimates, our results indicate that less particles may reach the seafloor north (60 ± 2 m d− 1, station 8) than south of the Agulhas Return Current (119 ± 23 and 130 ± 5 m d− 1 at stations 3 and 7, respectively). This information is essential for understanding particle transport and by extension, carbon export. In the deep water column, the 230Thxs concentrations did not increase linearly with depth, probably due to lateral transport of North Atlantic Deep Water (NADW) from the Atlantic to the Indian sector, which renews the deep waters and decreases the 230Thxs concentrations. A specific 230Thxs transport model is applied in the deep water column and allows us to assess a “travel time” of NADW ranging from 2 to 15 years.  相似文献   

6.
The coupling of physics and biology was examined along a 160 km long transect running out from the north coast of South Georgia Island and crossing the Southern Antarctic Circumpolar Current Front (SACCF) during late December 2000. Surface and near surface potential TS properties indicated the presence of three water types: a near-shore group of stations characterised by water which became progressively warmer and fresher closer to South Georgia, an offshore grouping in which sea surface temperatures and those at the winter water level were relatively warm (1.8°C and 0.5°C, respectively), and a third in which surface and winter water temperatures were cooler and reflected the presence of the SACCF. The transect bisected the SACCF twice, revealing that it was flowing in opposite directions, north-westward closest to South Georgia and south-eastwards at its furthest point from the island. The innermost limb was a narrow intense feature located just off the shelf break in 2000–3500 m of water and in which rapid surface baroclinic velocities (up to 35 cm s−1) were encountered. Offshore in the outermost limb, shown subsequently to be a mesoscale eddy that had meandered south from the retroflected limb of the SACCF, flow was broader and slower with peak velocities around 20 cm s−1. Chlorophyll a biomass was generally low (<1 mg m−3) over much of the transect but increased dramatically in the region of the innermost limb of the SACCF, where a deepening of the surface mixed layer was coincident with a subsurface chlorophyll maximum (7.4 mg m−3) and elevated concentrations down to 100 m. The bloom was coincident with depleted nutrient concentrations, particularly silicate, nitrate and phosphate, and although ammonium concentrations were locally depleted the bloom lay within an elevated band (up to 1.5 mmol m−3) associated with the frontal jet. Increased zooplankton abundance, higher copepod body carbon mass and egg production rates all showed a strong spatial integrity with the front. The population structure of the copepods Calanoides acutus and Rhincalanus gigas at stations within the front suggested that rather than simply resulting from entrainment and concentration within the jet, increased copepod abundance was the result of development in situ. Estimates of bloom duration, based on silicate and carbon budget calculations, set the likely duration between 82 and 122 d, a figure supported by the development schedule of the two copepod species. Given this timescale, model outputs from FRAM and OCCAM indicated that particles that occurred on the north side of South Georgia in December would have been in the central-southern Scotia Sea 2–3 months earlier, probably in sea ice affected regions.  相似文献   

7.
The ratio of oxygen-18 to oxygen-16 (expressed as per mille deviations from Vienna Standard Mean Ocean Water, δ18O) is reported for seawater samples collected from seven full-depth CTD casts in the northern North Atlantic between 20° and 41°W, 52° and 60°N. Water masses in the study region are distinguished by their δ18O composition, as are the processes involved in their formation. The isotopically heaviest surface waters occur in the eastern region where values of δ18O and salinity (S) lie on an evaporation–precipitation line with slope of 0.6 in δ18O–S space. Surface isotopic values become progressively lighter to the west of the region due to the addition of 18O-depleted precipitation. This appears to be mainly the meteoric water outflow from the Arctic rather than local precipitation. Surface samples near the southwest of the survey area (close to the Charlie Gibbs Fracture Zone) show a deviation in δ18O–S space from the precipitation mixing line due to the influence of sea ice meltwater. We speculate that this is the effect of the sea ice meltwater efflux from the Labrador Sea. Subpolar Mode Water (SPMW) is modified en route to the Labrador Sea where it forms Labrador Sea Water (LSW). LSW lies to the right (saline) side of the precipitation mixing line, indicating that there is a positive net sea ice formation from its source waters. We estimate that a sea ice deficit of ≈250 km3 is incorporated annually into LSW. This ice forms further north from the Labrador Sea, but its effect is transferred to the Labrador Sea via, e.g. the East Greenland Current. East Greenland Current waters are relatively fresh due to dilution with a large amount of meteoric water, but also contain waters that have had a significant amount of sea ice formed from them. The Northeast Atlantic Deep Water (NEADW, δ18O=0.22‰) and Northwest Atlantic Bottom Waters (NWABW, δ18O=0.13‰) are isotopically distinct reflecting different formation and mixing processes. NEADW lies on the North Atlantic precipitation mixing line in δ18O–salinity space, whereas NWABW lies between NEADW and LSW on δ18O–salinity plots. The offset of NWABW relative to the North Atlantic precipitation mixing line is partially due to entrainment of LSW by the Denmark Strait overflow water during its overflow of the Denmark Strait sill. In the eastern basin, lower deep water (LDW, modified Antarctic bottom water) is identified as far north as 55°N. This LDW has δ18O of 0.13‰, making it quite distinct from NEADW. It is also warmer than NWABW, despite having a similar isotopic composition to this latter water mass.  相似文献   

8.
Mesozooplankton abundance, community structure and copepod grazing on phytoplankton were examined during the austral spring 1997 and summer 1998 as part of the US JGOFS project in the Pacific sector of the Antarctic polar front. Mesozooplankton abundance and biomass were highest at the polar front and south of the front. Biomass increased by 1.5–2-times during the course of the study. Calanoides acutus, Calanus propinquus, C. simillimus, Rhincalanus gigas and Neocalanus tonsus were the dominant large copepods found in the study. Oithona spp and pteropods were numerically important components of the zooplankton community. The copepod and juvenile krill community consumed 1–7% of the daily chlorophyll standing stock, equivalent to 3–21% of the daily phytoplankton production. There was an increased grazing pressure at night due to both increased gut pigment concentrations as well as increases in zooplankton numbers. Phytoplankton carbon contributed a significant fraction (>50%) of the dietary carbon for the copepods during spring and summer. The relative importance of phytoplankton carbon to the diet increased south of the polar front, suggested that grazing by copepods could be important to organic carbon and biogenic silica flux south of the polar front.  相似文献   

9.
Chlorophyll a of total and particles retained on 30 μm mesh plankton net were both determined in surface waters along two cruise tracks ranging from the Subtropical water to the marginal ice zone in the Pacific sector of the Southern Ocean in austral summer. Total surface chlorophyll a in the study area was mostly less than 1 μg chl a 1−1, and showed distributions with no obvious trend associated with different waters masses of the Antarctic and the Subantarctic, although total chlorophyll a concentrations changed greatly within each water mass. Particularly low concentrations of chlorophyll a were detected in the marginal ice zone. Chlorophyll a contained in 30 μm netplankton made up 5∼60% of total chlorophyll a: large near the marginal ice zone and becoming small with travel towards the north. High percentage shares of netplankton chlorophyll a were confirmed even in low total chlorophyll a concentrations in summer in the Southern Ocean. A positive relation was observed between the percentage of 30 μm netplankton and the “average total chlorophyll a”, although there was great scatter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Several large deployments of neutrally buoyant floats took place within the Antarctic Intermediate (AAIW), North Atlantic Deep Water (NADW), and the Antarctic Bottom Water (AABW) of the South Atlantic in the 1990s and a number of hydrographic sections were occupied as well. Here we use the spatially and temporally averaged velocities measured by these floats, combined with the hydrographic section data and various estimates of regional current transports from moored current meter arrays, to determine the circulation of the three major subthermocline water masses in a zonal strip across the South Atlantic between the latitudes of 19°S and 30°S. We concentrate on this region because the historical literature suggests that it is where the Deep Western Boundary Current containing NADW bifurcates. In support of this notion, we find that a net of about 5 Sv. of the 15–20 Sv that crosses 19°S does continue zonally eastward at least as far as the Mid-Atlantic Ridge. Once across the ridge it takes a circuit to the north along the ridge flanks before returning to the south in the eastern half of the Angola Basin. The data suggest that the NADW then continues on into the Indian Ocean. This scheme is discussed in the context of distributions of dissolved oxygen, silicate and salinity. In spite of the many float-years of data that were collected in the region a surprising result is that their impact on the computed solutions is quite modest. Although the focus is on the NADW we also discuss the circulation for the AAIW and AABW layers.  相似文献   

11.
Hydrographic measurements by CTD were made in the western-central Equatorial Pacific (160°W–147°E) during the Japanese Pacific Climate Study cruise in January–February 1991. InT-S diagram, three water masses are seen in the layer of kg/m3: salinity water corresponding to the Tropical Water of eastern South Pacific origin, less saline water in the North Pacific, and water with salinity between the above two, found on the equator. In three meridional sections (160°W–160°E), the Tropical Water of eastern South Pacific origin extends further equatorward than the climatological data of Levitus (1982).  相似文献   

12.
Both historic and currently operational chlorophyll algorithms of the satellite-borne ocean color sensors, such as SeaWiFS, were evaluated for in situ spectral radiation and chlorophyll data in some Case I waters, including the waters in the Indian Ocean sector of the Southern Ocean. Chlorophyll a concentration of the data set (n = 73) ranged from 0.04 to 1.01 mg m–3. The algorithms had higher accuracy for the low- and mid-latitude waters (RMSE: 0.163–0.253), specifically the most recently developed algorithms of OCTS and Sea WiFS showed 0.163 and 0.170 of Root Mean Square Errors, respectively. However, these algorithms had large errors (0.422–0.621) for the Southern Ocean data set and underestimated the surface chlorophyll by more than a factor of 2.6. The absorption coefficients in the blue spectral region retrieved from remote sensing reflectance varied in a nonlinear manner with chlorophyll a concentration, and the value in the Southern Ocean was significantly lower than that in the low- and mid-latitude waters for each chlorophyll a concentration. The underestimation of chlorophyll a concentration in the Southern Ocean with these algorithms was caused by the lower specific absorption coefficient in the region compared with the low- and mid-latitude waters under the same chlorophyll a concentration.  相似文献   

13.
Chla, protein, RNA and DNA were measured in 400 samples taken from the surface down to 5,000 m at 27 oceanographical stations in the North Pacific Ocean. Two section diagrams of these cellular constituents were given along 155°E and 155°W meridians, and several vertical profiles of the four constituents were also given at some stations near Japan. The average concentration ranges of Chla, protein, RNA and DNA obtained in this study area were 0.025–0.862, 11.4–88.1, 1.36–35.3 and 0.13–5.24g/l, respectively. Chla was distributed mostly in the photic zone as we would expect. However protein, RNA were in high concentrations within the photic zone and sometimes extremely high concentrations in the deep aphotic zone.  相似文献   

14.
The Continuous Plankton Recorder (CPR) Type I was first used in Antarctic waters during the 1925–1927 Discovery Expedition, and has been used successfully for 70 years to monitor plankton in the North Sea and North Atlantic Ocean. Sixty-five years later the CPR as a Type II version returned to Antarctic waters when the Australian Antarctic Division initiated a survey of the Southern Ocean on RSV Aurora Australis south of Australia and west to Mawson. The objectives are to study regional, seasonal, interannual and long-term variability in zooplankton abundance, species composition and community patterns, as well as the annual abundance and distribution of krill larvae. The survey covers a large area from 60°E to 160°E, and south from about 48°S to the Antarctic coast—an area of more than 14 million km2. Tows are conducted throughout the shipping season, normally September to April, but occasionally as early as July (midwinter). The large areal and temporal scale means that it is difficult to separate temporal and geographical variation in the data. Hence, CPRs are now also towed on the Japanese icebreaker Shirase in collaboration with the Japanese Antarctic programme. Shirase has a fixed route and time schedule, travelling south on 110°E in early December and north on 150°E in mid-March each year, and will serve as an important temporal reference for measuring long-term interannual variability and to help interpret the Australian data. Since 1991, over 90 tows have been made, providing over 36,000 nautical miles of records. The most successful seasons to date have been the 1997/1998, 1999/2000 and 2000/2001 austral summers with 20, 31 and 26 tows, respectively. The 1999/2000 season included a unique, nearly simultaneous three-ship crossing of the Southern Ocean along 25° 30’E, 110°E and 157°E. Typical CPR tows show very high abundance of zooplankton in the uppermost 20 m of the permanently open ocean zone between the sea-ice zone and the Sub-Antarctic Front; this is an area thought to be oligotrophic. Appendicularians and small calanoid and cyclopoid copepods dominate the plankton. By comparison the surface waters of the sea-ice zone have low species diversity and abundances. Zooplankton data, and hence distribution patterns, can be time- and geo-coded to GPS data and environmental data collected by the ships’ underway monitoring system (e.g. fluorescence, water temperature, salinity, and meteorological data).  相似文献   

15.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

16.
We analysed samples taken through the euphotic zone from 18 stations between the Ligurian Sea (6°E) and the Levantin Basin (32°E) from 24 May to 25 June 1996. Both ciliate and chlorophyll concentrations ranged over a factor of about 7, but ciliate concentrations (0.4–2.8 mg C m3) varied irregularly compared to a longitudinal decline, west to east, in chlorophyll concentration (0.07–0.48 mg m3). The lower chlorophyll concentrations (0.1 mg m2) of the eastern basin stations corresponded with a relatively high stock of ciliates (0.5 mg C m2). Large mixotrophic ciliates were more abundant, in both absolute and relative terms, in the eastern Mediterranean stations with less chlorophyll. The species diversity of tintinnid ciliates appeared higher in the central and eastern basins compared to the west. Our results suggest a shift from the western to eastern Mediterranean in the planktonic food towards a microbially dominated system.  相似文献   

17.
The 1994 Tasmante swath-mapping and reflection seismic cruise covered 200 000 km2 of sea floor south and west of Tasmania. The survey provided a wealth of morphological, structural and sedimentological information, in an area of critical importance in reconstructing the break-up of East Gondwana.The west Tasmanian margin consists of a non-depositional continental shelf less than 50 km wide and a sedimented continental slope about 100 km wide. The adjacent 20 km of abyssal plain to the west is heavily sedimented, and beyond that is lightly sedimented Eocene oceanic crust formed as Australia and Antarctica separated. The swath data revealed systems of 100 m-deep downslope canyons and large lower-slope fault-blocks, striking 320° and dipping landward. These continental blocks lie adjacent to the continent ocean boundary (COB) and are up to 2500 m high and have 15°–20° scarps.The South Tasman Rise (STR) is bounded to the west by the Tasman Fracture Zone extending south to Antarctica. Adjacent to the STR, the fracture zone is represented by a scarp up to 2000 m high with slopes of 15–20°. The scarp consists of continental faultblocks dipping landward. Beyond the scarp to the west is a string of sheared parallel highs, and beyond that is lightly sedimented Oligocene oceanic crust 4200–4600 m deep with distinct E-W spreading fabric. The eastern margin of the bathymetric STR trends about 320° and is structurally controlled. The depression between it and the continental East Tasman Plateau (ETP) is heavily sedimented; its western part is underlain by thinned continental crust and its central part by oceanic crust of Late Cretaceous to Early Tertiary age. The southern margin of the STR is formed by N-S transform faults and south-dipping normal faults.The STR is cut into two major terrains by a N-S fracture zone at 146°15E. The western terrain is characterised by rotated basement blocks and intervening basins mostly trending 270°–290°. The eastern terrain is characterised by basement blocks and intervening strike-slip basins trending 300°–340°. Recent dredging of basement rocks suggests that the western terrain has Antarctic affinities, whereas the eastern terrain has Tasmanian affinities.Stretching and slow spreading between Australia and Antarctica was in a NW direction from 130–45 Ma, and fast spreading was in a N-S direction thereafter. The western STR terrain was attached to Antarctica during the early movement, and moved down the west coast of Tasmania along a 320° shear zone, forming the landward-dipping continental blocks along the present COB. The eastern terrain either moved with the western terrain, or was welded to it along the 146°15 E fracture zone in the Early Tertiary. At 45 Ma, fast spreading started in a N-S direction, and after some probable movement along the 146°15E fracture zone, the west and east STR terrains were welded together and became part of Australia.  相似文献   

18.
The spatial and temporal distribution of cadmium (Cd) and phosphate in the Southern Ocean are related to biology and hydrography. During a period of 18 days between transects 5/6 and 11, a phytoplankton spring bloom developed in the Polar Frontal region. Upper water Cd concentrations were not depleted and ranged from 0.2 to 0.8 nM at about 10 m depth. These relatively high Cd concentrations are attributed to upwelling of Upper Circumpolar Deep Water (0.5–1.2 nM in the core) in combination with low biological productivity (0.2 to 0.3 mg m−3 chlorophyll-a, 0.3 g C m−2 d−1). Total particulate Cd concentrations at 40 m depth were between 0.02 and 0.14 nM with the maximum in concentration in the Polar Frontal region. Most of the particulate Cd at this depth (85–94%) was detected in the first phase of a sequential chemical leaching treatment which includes adsorbed Cd as well as Cd incorporated in algae. The Polar Frontal region was characterized by minima in Cd concentration and Cd/phosphate ratio of seawater at both transects; values were the lowest at transect 11 after development of the spring bloom which was dominated by diatoms. This decreasing Cd/phosphate ratio in seawater during spring bloom development was attributed to preferential Cd gross uptake which more than compensated the process of preferential Cd recycling. Within the Upper Circumpolar Deep Water, Cd showed a maximum in concentration similar to that of the major nutrients. Both the Cd concentration and the Cd/phosphate ratio of the deeper water increased in southern direction, from 0.4 to 0.7 nM and from 0.2 to 0.3 nM/μM, respectively. Antarctic Intermediate Water has a Cd concentration of 0.21 nM with a Cd/phosphate ratio of 0.10 nM/μM. In Antarctic Bottom Water, Cd concentrations ranged from 0.60 to 0.82 nM.  相似文献   

19.
Seasonal and interannual variations of the mixed layer properties in the Antarctic Zone (AZ) south of Tasmania are described using 7 WOCE/SR3 CTD sections and 8 years of summertime SURVOSTRAL XBT and thermosalinograph measurements between Tasmania and Antarctica. The AZ, which extends from the Polar Front (PF) to the Southern Antarctic Circumpolar Current Front (SACCF), is characterized by a 150 m deep layer of cold Winter Water (WW) overlayed in summer by warmer, fresher water mass known as Antarctic Surface Water (AASW). South of Tasmania, two branches of the PF divide the AZ into northern and southern zones with distinct water properties and variability. In the northern AZ (between the northern and southern branches of the PF), the mixed layer depth (MLD) is fairly constant in latitude, being 150 m deep in winter and around 40–60 m in summer. In the southern AZ, the winter MLD decreases from 150 m at the S-PF to 80 m at the SACCF and from 60 to 35 m in summer. Shallower mixed layers in the AZ-S are due to the decrease in the wind speed and stronger upwelling near the Antarctic Divergence. The WW MLD oscillates by ±15 m around its mean value and modest interannual changes are driven by winter wind stress anomalies.The mixed layer is on annual average 1.7 °C warmer, 0.06 fresher and 0.2 kg m−3 lighter in the northern AZ than in the southern AZ. The Levitus (1998) climatology is in agreement with the observed mean summer mixed layer temperature and salinity along the SURVOSTRAL line but underestimates the MLD by 10–20 m. The winter MLD in the climatology is also closed to that observed, but is 0.15 saltier than the observations along the AZ-N of the SR3 line. MLD, temperature and density show a strong seasonal cycle through the AZ while the mixed layer salinity is nearly constant throughout the year. During winter, the AZ MLD is associated with a halocline while during summer it coincides with a thermocline.Interannual variability of the AZ summer mixed layer is partly influenced by large scale processes such as the circumpolar wave which produces a warm anomaly during the summer 1996–1997, and partly by local mechanisms such as the retroflection of the S-PF which introduces cold water across the AZ-N.  相似文献   

20.
A one-dimensional, temperature-dependent model is implemented to simulate the descent–ascent cycle of Antarctic krill (Euphausia superba) embryos and larvae. Inputs to the model are monthly mean climatologies of ambient temperature and density fields obtained from the World Ocean Atlas Database for Southern Ocean waters. Simulations are done with a 1° resolution at a circumpolar scale, south of 60°S, and the results are interpolated to a 5′ grid to match the resolution of the bottom bathymetry data. Simulations of the descent–ascent cycle using environmental conditions corresponding to the Antarctic krill spawning season (December–March) resulted in unconstrained success in completion of the cycle in water deeper than 1000 m. Continental shelf regions favorable to successful hatching of Antarctic krill embryos are limited to areas along the west Antarctic Peninsula, large areas in the Bellingshausen and Amundsen Seas, offshore of Wilkes Land, and to the east and west of Prydz Bay. These are regions where the Southern Antarctic Circumpolar Current Front is along the shelf slope, the Antarctic Slope Front is absent, and Circumpolar Deep Water is present. The effect of seasonal variability in temperature on the descent–ascent cycle tends to enhance the probability of success in regions offshore of Wilkes Land, Queen Maud Land, and the eastern shelf of the Antarctic Peninsula later in the spawning season. The simulations show that success of the descent–ascent cycle is sensitive to initial embryo diameter and larval ascent rate. Initial embryo diameter may provide an additional constraint on success of the descent–ascent cycle, especially in continental shelf waters, where small embryos tend to encounter the bottom before hatching. The circumpolar distributions of simulated embryo hatching depth and larval success show that all regions of the Antarctic are not equal in the ability to support successful completion of the Antarctic krill descent–ascent cycle, which has implications for the overall circum-Antarctic krill distribution and for the development of nutrient and material budgets, especially for Antarctic continental shelf areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号