首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
王道杰  陈倍  孙健辉 《测绘通报》2022,(5):140-144+169
机载激光雷达技术(LiDAR)作为一项先进的遥感技术,是植被覆盖区DEM获取的重要手段之一,而不同地形坡度条件及点云密度对DEM产品质量有重要影响。本文以辽宁省某市的机载LiDAR数据为基础,选取5种不同地形坡度的点云数据,通过随机、等间距及基于曲率3种不同的点云抽稀方法,按照点云保留率为80%、60%、40%、20%和10%共5个不同梯度的抽稀倍数对原始点云进行抽稀简化处理,生成与之对应的DEM并对其进行精度评价,以此研究地形坡度、点云抽稀方法、抽稀倍数对DEM精度的影响。结果表明,DEM精度与地形坡度呈负相关关系,即RMSE随地形坡度升高不断增加;基于曲率的抽稀方法在地形坡度>30°时,相较于其他两种方法RMSE较小,具有明显优势;40%的点云保留率是平衡DEM精度与数据存储效率的一个节点,当点云保留率<40%时,DEM的高程RMSE会迅速增大。该研究对于利用机载LiDAR进行大范围DEM生产具有一定的指导和借鉴意义。  相似文献   

2.
一种从城区LiDAR数据提取DEM的方法   总被引:2,自引:0,他引:2  
机载激光扫描系统可以直接生成扫描区域的数字表面模型,但为了提取数字地面模型还须对LiDAR数据进行滤波处理。分析用坡度法对机载LiDAR数据进行滤波的不足,针对其不足以及城区LiDAR数据的特点,提出一种将坡度法与区域增长相结合的滤波方法。与坡度法相比,该方法提高了滤波的精度和效率,并能对复杂的城市地貌进行滤波。试验结果表明,该方法计算速度快,并能够有效地滤除城区LiDAR数据中的地物。  相似文献   

3.
霍芃芃  王梓琪  闫旭 《北京测绘》2021,35(10):1272-1277
为进一步提升复杂地形条件下无人机激光雷达(Light Detection and Ranging,LiDAR)点云数据构建数字高程模型的效率与精度,以2022年北京冬奥会延庆赛区场馆建设用地为实验区,按照不同抽稀比例,对实验区原始无人机激光雷达点云中分类出的地面点数据进行抽稀处理,利用克里金插值算法对不同密度地面点数据进行插值处理,结合高程中误差、平均绝对误差对生成的数字高程模型进行双重精度评定,得出以下结论:对于复杂地形而言,随着点云数据密度的下降,数字高程模型建模效率明显提升,但地形特征逐渐模糊,数据精度级别逐级降低,其中高程中误差由0.381 m增大至1.914 m,平均绝对误差值由0.335 m增大至1.357 m.在满足精度要求的前提下,对LiDAR点云数据进行适度抽稀处理,可保障生产成本与时效.  相似文献   

4.
结合机载LiDAR数据,提出了一种改进的GLAS光斑点冠层高度地形校正模型,以校正后的GLAS光斑点作为输入样本,结合MODIS遥感影像,利用支持向量回归(SVR)的方法对研究区森林冠层高度进行分生态区估测,并利用野外调查数据和机载LiDAR冠层高度结果对估测结果进行验证。结果显示:研究区的坡度等级直接影响GLAS光斑点森林冠层高度估测精度,改进的地形校正模型可以较好的减小坡度对GLAS光斑点森林冠层高度估测的影响,模型精度RMSE稳定在3.25~3.48 m;不同生态分区的SVR模型估测精度较为稳定,其RMSE=6.41~7.56 m;与算数平均高相比,样地的Lorey's高与制图结果拟合最好,不同生态分区平均估测精度为80.3%。机载LiDAR冠层高度结果的验证平均精度为79.5%,和Lorey's高验证结果呈现较好的一致性。  相似文献   

5.
激光雷达在森林参数反演中的应用   总被引:1,自引:0,他引:1  
激光雷达是近年来国际上发展十分迅速的主动遥感技术,在森林参数的定量测量和反演上取得了成功的应用。在林业上,高采样密度激光雷达能够获取单株木3维结构特征,采用不同的数据处理方法,可以得到不同精度的单株木参数。利用激光雷达测量森林参数不仅节省了人力,还提高了工作效率,现在已经成为快速获取树木几何参数的一种有效方法。文中主要介绍了LiDAR工作原理、类型及特点、影响LiDAR数据质量的因素、国内外LiDAR的发展状况及应用领域,重点介绍了国内外利用LiDAR数据反演森林参数(树高、郁闭度、冠幅、林分密度、断面积和蓄积量等)的方法和研究进展,同时对今后LiDAR在森林参数反演方面的研究作了展望。  相似文献   

6.
获取堤防中心线、堤顶堤坡和断面等特征信息对于堤防破损检测和安全评估具有重要意义.LiDAR技术为堤防检测工作提供了便利,LiDAR生成的DTM是一种连续化的地表数据,用于堤防特征信息提取具有工作量小、数据精度高的极大优势.本文提出了一种使用机载LiDAR生成的DTM数据开展堤防特征信息提取方法,采用圆环探测实现堤防中心线生成,与常规方法相比可以很好地规避堤防因侵蚀、垮塌等原因造成中心线数据变形、截断等缺陷;在此基础上,基于堤防坡度分类标准,给出了堤防堤顶、堤坡形态数据生产的流程和方法;通过圆环交线数据生成等距离堤防断面线,并自动提取堤防剖面.最后,对洞庭湖区共双茶垸蓄滞洪区120 km的堤防开展实证研究,表明本文方法可以很好地用于堤防工程特征信息的精确提取,有着很好的应用潜力.  相似文献   

7.
以一个数字城市项目用 LiDAR 点生成等高线为例,介绍了如何利用 LiDAR 点生成等高线及其相关要素的方法,主要包括 DTM 数据采集、LiDAR 数据的运用方式和生成等高线的过程。  相似文献   

8.
梁鑫  杨晓云 《测绘科学》2013,38(2):72-74
本文提出了一种适用于离散LiDAR数据的区域生长算法:将离散点云数据重采样为规则格网,通过坡度自适应区域生长法分割规则格网,获得不同的面片;建立各个分割面片之间的拓扑关系,将分割面片划分为粗差、植被、建筑物和地面;检测原始激光脚点到DTM的距离,判断是否为地面点。文中采用ISPRS提供的测试数据验证了算法分割的有效性。  相似文献   

9.
以济南市南部山区为试验区,探讨在ArcGIS中进行DEM总体精度计算的方法,并分析不同比例尺DEM对地面坡度分级统计的影响。为有效校正地面坡度分级统计的误差,构建高精度的1∶2 000地面坡度与1∶1万地面坡度的"地面坡度转换图谱"。在此基础上根据回归统计得出各级别对应的二次拟合曲线,校正能够大幅度提高地面坡度统计的精度。  相似文献   

10.
针对航空和地面LiDAR数据配准中点云数据的共轭特征较少且精度差异较大的问题,提出了一种基于可移动角点的航空和地面LiDAR数据配准方法:从航空和地面LiDAR数据中分别提取相应的建筑物角点,采用6参数模型对角点进行初始配准;以地面角点为参照,利用迭代移动方法对误差较大的航空角点进行修正;最后根据移动后的航空和地面角点计算获得点云配准关系。实验结果表明,该文方法可取得较好的点云配准效果,角点修正后能有效提升点云配准精度,适合于含有角点特征的航空和地面LiDAR数据配准。  相似文献   

11.
大光斑激光雷达数据已广泛应用于森林冠层高度提取,但通常仅限于地形坡度小于20°的平缓地区。在地形坡度大于20°的陡峭山区,地形引起的波形展宽使得地面回波和植被回波信息混合在一起,给森林冠层高度提取带来巨大挑战。本文利用激光雷达回波模型和地形信息,提出了一种模型辅助的坡地森林冠层高度反演算法。该方法以激光雷达回波信号截止点为参考,定义了波形高度指数H50和H75,使用激光雷达回波模型与已知地形信息模拟裸地的激光雷达回波,将裸地回波信号截止点与森林激光雷达回波信号截止点对齐,利用裸地回波计算常用的波形相对高度指数RH50和RH75,对森林冠层高度进行反演。并与高斯波形分解法和波形参数法的反演结果进行了比较。研究结果表明:(1)利用所提取的波形指数RH50和RH75对胸高断面积加权平均高(Lorey’s height)进行了估算,在坡度小于20°时,高斯波形分解法、波形参数法和模型辅助法的估算结果与实测值线性拟合的相关系数(R2)分别为0.70,0.78和0.98,对应的均方根误差(RMSE)分别为2.90 m,2.48 m和0.60 m,模型辅助法略优于其他两种方法;(2)在坡度大于20°时,高斯波形分解法、波形参数法和模型辅助法的R2分别为0.14,0.28和0.97,相应的RMSE分别为4.93 m,4.53 m和0.81 m,模型辅助法明显优于其他两种方法;(3)在0°—40°时,模型辅助法对Lorey’s height估算结果与实测值的R2为0.97,RMSE为0.80 m。本研究提出的模型辅助法具有更好的地形适应性,在0°—40°的坡度范围内具备对坡地森林冠层高度反演的潜力。  相似文献   

12.
机载激光雷达平均树高提取研究   总被引:16,自引:3,他引:13  
为了研究机载激光雷达(LiDAR)树高提取技术,以山东省泰安市徂徕山林场为实验区,于2005年5月进行了机载LiDAR数据获取和外业测量.通过对LiDAR点云数据的分类处理,分别得到了试验区的地面点云子集、植被点云子集和高程归一化的植被点云子集.基于高程归一化的植被点云子集计算了上四分位数处的高度,与实地测量的数据进行了比较,并结合中国森林调查规程进行了实用性分析.结果表明:对于较低密度的点云数据,使用分位数法可以较好地进行林分平均高的估计;机载激光雷达技术对树高估计是可行的,精度都高于87%,总体平均精度为90.59%,其中阔叶树的精度高于针叶树.该试验精度可以满足中国二类森林调查规程中平均树高因子的一般商品林和生态公益林的精度要求,对国有商品林小班的调查精度要求(5%)存在一点差距,需要在国有商品林区进一步开展验证工作.对本试验区而言,已经可以满足其作为森林公园生态公益林的调查要求.  相似文献   

13.
Spaceborne light detection and ranging (LiDAR) enables us to obtain information about vertical forest structure directly, and it has often been used to measure forest canopy height or above-ground biomass. However, little attention has been given to comparisons of the accuracy of the different estimation methods of canopy height or to the evaluation of the error factors in canopy height estimation. In this study, we tested three methods of estimating canopy height using the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), and evaluated several factors that affected accuracy. Our study areas were Tomakomai and Kushiro, two forested areas on Hokkaido in Japan. The accuracy of the canopy height estimates was verified by ground-based measurements. We also conducted a multivariate analysis using quantification theory type I (multiple-regression analysis of qualitative data) and identified the observation conditions that had a large influence on estimation accuracy. The method using the digital elevation model was the most accurate, with a root-mean-square error (RMSE) of 3.2 m. However, GLAS data with a low signal-to-noise ratio (⩽10.0) and that taken from September to October 2009 had to be excluded from the analysis because the estimation accuracy of canopy height was remarkably low. After these data were excluded, the multivariate analysis showed that surface slope had the greatest effect on estimation accuracy, and the accuracy dropped the most in steeply sloped areas. We developed a second model with two equations to estimate canopy height depending on the surface slope, which improved estimation accuracy (RMSE = 2.8 m). These results should prove useful and provide practical suggestions for estimating forest canopy height using spaceborne LiDAR.  相似文献   

14.
The aim of this paper was to analyze the ground and low vegetation points of a Light Detection and Ranging (LiDAR) point cloud from the aspect of the generated digital terrain model (DTM). We determined the height difference between the surveyed surface and the DTM and the level of interspersion of ground and low vegetation points in a floodplain. Finally, we performed a supervised classification with topographic (elevation, slope and aspect) variables and an Normalized Difference Vegetation Index (NDVI) layer to identify swales and point bars as floodplain forms. Cross sections of field surveys provided reference data to express the magnitude of the bias on the DTM caused by the vegetation, and we proved that the bias can reach the 60% of the relative height and depth of the floodplain forms (mean error was 0.15 ± 0.12 m). A landscape metric, the Aggregation Index, provided an appropriate tool to analyze and quantify the interspersion of the ground and vegetation points: indicating a high level of interspersion of the classified points, i.e. proved that vegetation points where the last echoes reflected from the vegetation became ground points. Floodplain classification performed best with the common use of DTM, slope, aspect and NDVI coverages, with 71% overall accuracy.  相似文献   

15.
The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation Satellite (ICESat) is a spaceborne LiDAR sensor. It is the first LiDAR instrument which can digitize the backscattered waveform and offer near global coverage. Among others, scientific objectives of the mission include precise measurement of vegetation canopy heights. Existing approaches of waveform processing for canopy height estimation suggest Gaussian decomposition of the waveform which has the limitation to properly characterize significant peaks and results in discrepant information. Moreover, in most cases, Digital Terrain Models (DTMs) are required for canopy height estimation. This paper presents a new automated method of GLAS waveform processing for extracting vegetation canopy height in the absence of a DTM. Canopy heights retrieved from GLAS waveforms were validated with field measured heights. The newly proposed method was able to explain 79% of variation in canopy heights with an RMSE of 3.18 m, in the study area. The unexplained variation in canopy heights retrieved from GLAS data can be due to errors introduced by footprint eccentricity, decay of energy between emitted and received signals, uncertainty in the field measurements and limited number of sampled footprints.Results achieved with the newly proposed method were encouraging and demonstrated its potential of processing full-waveform LiDAR data for estimating forest canopy height. The study also had implications on future full-waveform spaceborne missions and their utility in vegetation studies.  相似文献   

16.
The creation of a quality Digital Terrain Model (DTM) is essential for representing and analyzing the Earth in a digital form. The continuous improvements in the acquisition and the potential of airborne Light Detection and Ranging (LiDAR) data are increasing the range of applications of this technique to the study of the Earth surface. The aim of this study was to determine the optimal parameters for calculating a DTM by using an iterative algorithm to select minimum elevations from LiDAR data in a steep mountain area with shrub vegetation. The parameters were: input data type, analysis window size, and height thresholds. The effects of slope, point density, and vegetation on DTM accuracy were also analyzed. The results showed that the lowest root mean square error (RMSE) was obtained with an analysis window size of 10 m, 5 m, and 2.5 m, rasterized data as input data, and height thresholds equal to or greater than 1.5 m. These parameters showed a RMSE of 0.19 m. When terrain slope varied from 0–10% to 50–60%, the RMSE increased by 0.11 m. The RMSE decreased by 0.06 m when point density was increased from 4 to 8 points/m2, and increased by 0.05 m in dense vegetation areas.  相似文献   

17.
Forest structural diversity metrics describing diversity in tree size and crown shape within forest stands can be used as indicators of biodiversity. These diversity metrics can be generated using airborne laser scanning (LiDAR) data to provide a rapid and cost effective alternative to ground-based inspection. Measures of tree height derived from LiDAR can be significantly affected by the canopy conditions at the time of data collection, in particular whether the canopy is under leaf-on or leaf-off conditions, but there have been no studies of the effects on structural diversity metrics. The aim of this research is to assess whether leaf-on/leaf-off changes in canopy conditions during LiDAR data collection affect the accuracy of calculated forest structural diversity metrics. We undertook a quantitative analysis of LiDAR ground detection and return height, and return height diversity from two airborne laser scanning surveys collected under leaf-on and leaf-off conditions to assess initial dataset differences. LiDAR data were then regressed against field-derived tree size diversity measurements using diversity metrics from each LiDAR dataset in isolation and, where appropriate, a mixture of the two. Models utilising leaf-off LiDAR diversity variables described DBH diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on models resulted in R² values of 0.66, 0.38 and 0.16, respectively, and leaf-off models 0.67, 0.37 and 0.23, respectively). When LiDAR datasets were combined into one model to describe tree height diversity and DBH diversity the models described 75% and 69% of the variance (R² of 0.75 for tree height diversity and 0.69 for DBH diversity). The results suggest that tree height diversity models derived from airborne LiDAR, collected (and where appropriate combined) under any seasonal conditions, can be used to differentiate between simple single and diverse multiple storey forest structure with confidence.  相似文献   

18.
森林植被碳储量的空间分布格局及其动态变化是陆地生态系统碳收支核算的基础。作为森林地上生物量的重要指示因子,森林高度的精确估算是提高森林植被碳储量估算精度的关键。现有研究已证明,由专业星载摄影测量系统获取的立体观测数据可用于森林高度提取,但光学遥感数据最大的问题是受云雨等天气因素的影响严重。区域森林地上生物量产品的生产需要充分挖掘潜在数据源。国产高分二号卫星(GF-2)虽然不是为获取立体观测数据而设计的专业星载摄影测量系统,但其获取的图像空间分辨率可达0.8 m,且具备±35°的的侧摆能力,在重复观测区域可构成异轨立体观测。本文以分别获取于2015年6月20日和2016年7月19的GF-2数据作为立体像对,其标称轨道侧摆角分别为0.00118°和20.4984°,以激光雷达数据获取的林下地形(DEM)和森林高度(CHM)为参考,对利用GF-2立体观测数据进行森林高度提取进行了研究。通过对立体处理得到的摄影测量点云的栅格化得到DSM,以激光雷达数据提供的DEM作为林下地形,得到了GF-2的CHM。结果表明GF-2提取的CHM与激光雷达CHM空间分布格局较为一致,两者之间存在明显的相关性,像素对像素的线性相关性(R2)达到0.51,均方根误差(RMSE)为3.6 m。研究结果表明,在林下地形已知的情况下,GF-2立体观测数据可用于森林高度估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号