首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
古莲河露天煤矿季节融化层及其剥离   总被引:1,自引:0,他引:1  
王秀峰 《冰川冻土》1996,18(3):279-283
古莲河矿区霍拉河盆地饱和冰季节融化层融化成浆状,影响露天煤矿的春季剥离。采取超前火烧植被和超前剥离植被层措施,使饮冰冻土类形成为少冰冻土类型。利用分条带的剥离方法,可实现季节融化层的超前剥离。  相似文献   

2.
随着季节的变化,季节性冻土区活动层在冻融过程中物性参数变化显著。以东北地区季节性冻土为研究对象,采用高斯随机粗糙面来模拟粗糙不平的冻结层和融化层界面,建立了能精细描述活动层非均匀性的随机介质模型,并进行了探地雷达正演模拟。研究结果表明:活动层的冻结深度和融化深度随季节而变化,其介电常数和电导率也随季节而变化;非均匀性的活性层、起伏不平的冻结层和融化层使雷达剖面中的散射波非常发育,随时间变化,融化层起伏越大,雷达剖面中的散射波能量越强,融化层和冻结层界面的反射波识别越难。同时,证明应用探地雷达监测季节性冻土的季节变化、冻结深度和融化深度的时间和空间变化是切实可行的。  相似文献   

3.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

4.
本文通过对我国大兴安岭古莲河煤矿地区火灾后第二年冻土环境的野外调查表明,火灾后气温、地温、蒸发量及风速有明显的增加;湿度、含冰量、含水量有显著的减小。所有这些因子的变化导致了季节融化深度的增加。这些结论说明了森林火灾后冻土环境确实有较大的变化。此外,结合室内试验,本文还对火灾后最大季节融化深度(ξ_(max))进行了预测、由于植被与冻土关系的复杂性,本文对今后的工作提出了自己的看法,以便更完善地研究火灾后冻土环境的变化及对森林生态系统的影响。  相似文献   

5.
一、引言 在多年冻土地区,随着土中水分的冻结和融化,会导致一系列奇异独特的冻土现象,如冻胀丘、冻融滑塌和热融沉陷等。这些现象往往给结构物造成灾害,如建筑物的损坏,道路的翻浆和沉陷,管道的折裂和变形等。因此测定冻土水分随季节、土质和土层深度等的变化,确定冻结和融化速率及多年冻土上限等,就是冻土研究和勘测的一项重要内容。  相似文献   

6.
我国冻土融化压缩性研究   总被引:4,自引:1,他引:4  
冻土中的热交换是冻土生存与消融最重要的因素。随着国民经济建设的发展,改变了多年冻土及季节冻土区建筑物热量和地面条件,从而加速了冻土中热迁移过程。防止冻土融化是保持多年冻土地基强度的重要措施。然而,当冻土的融化不能防止时,对冻土融化固结特性的研究就成为冻土力学研究的主要课题,其中包括冻土的融化下沉系数、融化速率、压缩系数,以及它们与冻土基本物理指标间的关系等。建筑实践经验告诉我们,融沉破坏是多年冻土区建筑物冻害的主要原因.对季节冻土区工民建筑物浅基的实施,冻土融化下沉性则成为基础埋置深度设计的重要依据。  相似文献   

7.
2004年3月至2005年7月对古尔班通古特沙漠南部典型半固定沙垄土壤水分进行了系统监测,结合气象资料,特别是对冬季积雪和冻土资料的分析,认为该沙漠沙丘土壤水分时空变化规律在很大程度上受积雪融化和季节性冻土的影响.由于冬季稳定存在20~30 cm的积雪于春季融化,使得春季沙丘土壤含水率成为全年最高的季节,从而为早春植物的萌发生长创造了有利的条件.冬季1 m多深的冻土于早春时节由表及里开始消融,沙丘表面融化的雪水在坡面重力作用下,沿难以透水的冻土层上界自坡上向坡下发生迁移,在春夏季形成了垄间最高、坡部次之和垄顶最少的土壤水分空间格局.该研究具有生态学意义,可为古尔班通古特沙漠特殊环境条件下植被恢复与重建提供依据.  相似文献   

8.
青藏铁路格拉段多年冻土上限的确定方法   总被引:1,自引:0,他引:1  
影响多年冻土地区建筑物稳定性的主要部位是冻土上限附近及其上部的季节融化层.准确确定多年冻土上限的位置及掌握其变化规律是冻土地区工程勘察的基本工作和重要内容.介绍了青藏铁路多年冻土上限的勘察和确定方法.  相似文献   

9.
吉林省土壤冻融的逐日变化及与气温、 地温的关系   总被引:2,自引:1,他引:1  
土壤冻融过程对气候和生态环境演变有重要影响。为了研究季节冻土区土壤冻融过程及其对气候变化的响应,利用2014-2017年吉林省典型代表观测站逐日冻土、气温和地温数据,研究土壤冻融的逐日变化及其与气温、地温的关系。结果表明:在土壤冻结和融化完整过程中,冻土上限呈直线上升趋势变化,下限呈先增大后减小的三次曲线趋势变化,即从稳定冻结初日起,冻土深度逐渐加深,在达到最大值后,缓慢变浅。冻土融化包括下限和上限融化两个过程,具有“两头化”的变化特征。冻土上限融化与下限同时开始或者晚于下限,但冻土上限融化的日变化量要大于下限。在土壤冻结过程中,活动积温、0 cm地积温、10 cm地积温与冻结深度呈三次曲线变化关系,随负积温的增加,冻结深度加深。在冻土上限融化过程中,活动积温、0 cm地积温、10 cm地积温与冻土上限深度呈三次曲线变化关系,随正积温的增加,上限融化深度加深。在冻土下限融化过程中,活动积温、0 cm地积温、160 cm地积温与冻土下限深度呈显著的直线趋势,随正积温的增加,下限融化深度变浅。  相似文献   

10.
工程活动下多年冻土热稳定性评价模型   总被引:11,自引:7,他引:11  
提出了用季节融化层底板到潜在季节冻结深度区间沉积物融化所需要的热量与季节冻结层底板温度升高至0 ℃所需要的热量之和(Qt), 与夏半年土体吸收的热量(Q+)的比值来描述冻土热稳定性(ST=Qt/ Q+). 根据青藏公路沿线地温温度场的监测资料,对多年冻土热稳定性模型进行了计算,并分析了多年冻土热稳定性与年平均地温、多年冻土顶板温度和季节融化深度间的关系. 根据人类工程活动对多年冻土影响,将多年冻土热稳定性分为4类:热稳定型、热稳定过渡型、热不稳定型和热极不稳定型多年冻土.  相似文献   

11.
青藏公路沿线通信光缆埋设地段冻土工程地质条件及评价   总被引:1,自引:5,他引:1  
王家澄  吴紫汪 《冰川冻土》1997,19(3):240-244
青藏公路沿线季节冻土和多年冻土的总长度为760km,根据气温冻结指数和融化指数可估算最大季节冻结深度和最大季节融化深度。根据含水量划分出5种冻土类型和5个冻胀敏感性等级。提出了光缆埋设若干选线和施工建议。  相似文献   

12.
一维饱和冻土融化固结分析   总被引:3,自引:2,他引:1  
明锋  李东庆  张宇 《冰川冻土》2016,38(4):1067-1073
冻土的融化固结是在融化的基础上进行的,是温度与变形耦合作用的结果.根据考虑冰水相变的热传导方程和水分迁移方程,建立以孔隙比为变量的融化变形固结理论.利用有限元软件对冻土一维融化固结进行数值模拟,分析了融化过程中孔隙比、孔隙水压力、变形等随时间的变化规律,并与实验结果进行对比.研究表明:含水率的增大会阻碍融化锋面的推进速率,进而降低土体固结速率,而且冻土的固结过程滞后于冻土的融化过程.随着融化锋面的移动,固结区域不断增大.冻土的融化固结过程也是孔隙水的消散过程,随着孔压的不断消散,变形量逐渐增加.最大位移出现在土体表面,最大沉降量随时间增长而增大,最后趋于一个稳定值.  相似文献   

13.
青藏铁路路基下融化夹层特征及其对路基沉降变形的影响   总被引:1,自引:0,他引:1  
基于青藏铁路多年冻土区路基地温与变形现场监测资料, 研究了青藏铁路路基下融化夹层特征及其对路基沉降变形的影响. 结果表明:在已有监测场地中, 青藏铁路沿线天然场地融化夹层发育较少, 而路基下融化夹层发育较多. 低温冻土区路基下融化夹层能够逐渐完全回冻使其消失, 高温冻土区大部分路基下融化夹层有进一步发展的趋势. 当融化夹层下部为高含冰量冻土时, 融化夹层与路基沉降变形关系密切, 路基易产生较大的沉降变形; 当融化夹层下部为低含冰量冻土时, 路基沉降变形较小.  相似文献   

14.
大兴安岭北部霍拉河盆地季节融化层的研究   总被引:1,自引:1,他引:1  
大兴安岭北部霍拉河盆地季节融化层的特征受气温的控制,并随地面条件、含水量和土质的不同而变化。最大季节融化深度,在土类相同时,裸露的比有植被和雪盖的深0.4—0.5m;土类不同时,卵砾石的最大,碎石亚粘土、亚粘土和草炭亚粘土的分别为卵砾石的0.65、0.5和0.4倍。年平均地温为-0.1℃的季节融化层比年平均地温为0——0.5℃的约提前2—3个月消失。回冻融化层中的地下冰与青藏高原相比,不甚发育,冻土构造主要呈整体状、微层状和裂隙状。  相似文献   

15.
青藏公路下伏多年冻土的融化分析   总被引:14,自引:6,他引:8  
基于青藏公路沿线高温冻土区和低温冻土区2组地温观测孔5 a的地温观测资料, 研究了路基下伏多年冻土的融化状态, 定量分析了进入路基下多年冻土内的热状况. 结果表明: 路基近地表地温明显高于对应天然地表下的地温, 路基近地表经历的融化期长于对应天然地表, 高温冻土区路基内已形成贯穿融化夹层;进入高温冻土区路基下伏多年冻土内的热收支处于持续不断的吸热状态, 进入低温多年冻土区的热收支也呈现出吸热明显大于放热的周期性变化;高温冻土区接近0℃的地温及其持续不断的热积累是引起下伏多年冻土不断融化的主要原因. 低温冻土区进入多年冻土的热积累暂时以增高地温耗热为主, 随着地温的增高, 低温冻土区也可能发生强烈的冻土融化.  相似文献   

16.
对于冻土工程而言, 基础热稳定性是决定工程稳定性及服役性能的关键. 为预测±400 kV青藏直流联网工程多年冻土区砼灌注桩基础的长期热稳定性, 建立了考虑相变问题的二维数值传热分析模型, 应用有限元方法研究了气候变暖背景下, 不同年平均地温、不同含冰量条件下灌注桩基础传热特性和长期热稳定性. 结果表明: 单桩对周围土体的热影响范围是桩径的4~5倍, 桩基周围融化深度随时间推移而增大, 在低含冰量的高温和低温冻土区桩基50 a后最大融化深度分别为6.65 m和3.05 m, 所对应的冻土上限平均融化速率分别为9.5 cm·a-1和3.6 cm·a-1;在高含冰量的高温和低温冻土区50 a后最大融化深度分别为5.25 m和2.77 m, 其冻土上限平均融化速率分别为6.7 cm·a-1和2.0 cm·a-1. 在气候变暖背景下, 桩基上部周围冻土逐渐升温、融化, 50 a后, 在低含冰量的高温冻土区桩基由于融化深度增大导致有效冻结长度减少28%, 在高含冰量的高温冻土区桩基的有效冻结长度减少15%, 桩侧冻结力随之相应减小. 该研究对于冻土区桩基长度设计、桩基工程的维护和冻土稳定性评价提供了重要的科学依据.  相似文献   

17.
多年冻土区桩基竖向承载力的预报模型   总被引:1,自引:1,他引:0  
唐丽云  杨更社 《岩土力学》2009,30(Z2):169-173
通过多年冻土区大气温度与地温关系,得出季节冻结期和季节融化期地面温度,进一步确定季节冻结及季节融化深度。综合地面温度得出多年冻土厚度随时间变化的关系,将大气温度、地面温度、融冻层厚度及多年冻土厚度变化建立起与时间相关的联系方程。考虑大气温度变化分析桩土相互作用并建立桩土相互作用模型。综合联系方程、桩土分析模型及冻土地区建筑地基基础设计规范中的单桩竖向承载力公式,建立了联系大气温度、地面温度、季节融冻深度、多年冻土层厚度变化与桩基承载力的关系预报模型,为预测在设计使用年限内随着大气温度变化桩基的工作状况提供较为科学的依据。  相似文献   

18.
基于自制的冻土-桩动力相互作用模型试验系统,对-5℃、-3℃及上层融化多年冻土中模型桩基进行了水平向动力试验,主要研究了冻结及上层融化冻土中模型桩基的桩头位移-荷载关系、桩基水平动刚度变化及桩身弯矩分布情况。结果表明:冻土中桩基动力响应特性与土体温度密切相关;正冻土中桩基有较大的侧向刚度,当冻土与桩接触面出现较大间隙时,桩头位移-荷载曲线呈反S形;桩基动力性能随多年冻土温度降低将有所改善;当冻土上部出现融化层时,桩基动响应变化显著,桩头动刚度明显减小,桩基在较小动载下可发生较大侧向位移,同时桩身最大弯矩值较正冻土中偏大,且此弯矩点埋深较大。对于多年冻土区桩基工程,应特别重视夏季上层冻土融化时可能出现的震害。  相似文献   

19.
东北多年冻土区埋地输油管道周围温度场特征非线性分析   总被引:1,自引:0,他引:1  
为解决冻土区输油管道周围土壤的温度计算问题,根据考虑相变瞬态温度场的控制微分方程,应用Galerkin法推导出了二维温度场的有限元计算公式.以东北多年冻土区中俄原油管道工程为背景,根据该工程区的冻土条件和气候条件,应用该方法对温热型输油管道土壤温度场进行了计算预报与对比分析.结果表明:对于输送油温为15 ℃、直径为0.914 m以及管顶埋深为2.0 m的管道,在没有铺设保温材料情况下,管顶之上的土壤在管道运行的第1年就达到热平衡状态,同时土壤融化速率在第1年达到最大,随后4a时间里迅速减小,第5年后融化速率变化趋于稳定;管道运行一段时间后,管道周围的融化圈随冷暖季节的变化呈交替式的扩展;在管道运行30 a后,融深>10 m,即管底下的融化层厚>7 m,而在铺设5~8 cm的聚氨酯保温材料后,融深控制在3.08~3.88 m,即管底下融化层厚为0.2~1.0 m.因此,合理使用保温方法能有效防止冻土区管道冻害的发生,同时达到保护冻土环境的目的.  相似文献   

20.
在多年冻土地区铁路路基工程中,人为上限(即季节最大融化深度)的合理计算对断面形式的合理设计具有重要的意义。人为上限受很多因素影响,通常可大致分二类:(1)构筑物及其附近土体特性指标及构筑物几何形状;(2)外界(上、下边界和地中热流)条件。 然而,青藏高原多年冻土地区腹部地带又具有下述特点:年平均气温低(-5—-7℃),年内负温期长达7个月以上,年内季节冻深超过季节融深,年平均地温较季节冻土区要低得多,在融化过程中由融化界面传入冻土中的热量成为不可忽视的影响因素。因此,必须分析其主要因素,以便使路  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号