首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
本文介绍了利用钻孔构造地层学和年代学资料鉴定平原区隐伏活动断裂长期活动习性的一种新的方法和应用实例。通过夏垫断裂上下盘东柳河屯 1,2号钻孔地层剖面年代学的测定和岩性的分析与对比 ,定量地恢复了距今 2 6ka以来断裂上下盘的差异沉积历史和垂直错动过程 ,建立了鉴别古地震的构造地层学标志。在此基础上 ,将断裂两侧的累积垂直位移量作为定量约束条件从新到老恢复到每一次地表破裂型地震错动前的状态 (扣除后期的同震垂直位移量 ) ,可识别出 11次地表破裂型古地震事件。指出夏垫断裂上的地表破裂型地震复发行为与古气候环境之间存在着密切的相关关系 ,气候极度寒冷的末次冰期间亚冰期和鼎盛期 (距今 19 3~ 2 6ka)共发生 6次地表破裂型古地震事件 ,这一时期是夏垫断裂地表破裂型 (古 )地震丛状群集期 ,复发间隔介于 90 0~ 190 0a ,且多数仅 90 0~ 12 0 0a。末次冰期鼎盛期晚期到冰后期 (距今 0~ 19 3ka)的地表破裂型 (古 )地震服从准周期复发模式 ,复发间隔明显地增长 ,包括公元 16 79年三河 -平谷 8级地震在内的最近 5次地表破裂型(古 )地震的复发间隔介于 370 0~  相似文献   

2.
丽江-小金河断裂中段晚第四纪古地震历史   总被引:3,自引:0,他引:3  
丽江-小金河断裂为川滇菱形块体内部重要的次级边界断裂,沿断裂断错地貌清晰,晚第四纪活动强烈,但历史上无地表破裂型地震的记录,其大震复发行为仍不清楚,难以评价其地震危险性。文中选取断错地貌最为显著的丽江-小金河断裂中段,在高分辨率卫星影像解译的基础上,在母猪达、红星和干塘子开挖3个探槽,并利用放射性碳测年和古地震事件的Ox Cal建模对古地震事件年龄进行了限定。研究结果表明,母猪达探槽揭示了3次古地震事件,分别发生在7 940~6 540a BP、4 740~4 050a BP和1 830~420a BP;红星探槽揭示了2次古地震事件,分别发生在5 120~3 200a BP和2 100~1 220a BP;干塘子探槽揭示了至少3次古地震事件,分别发生在44 980~17 660a BP、7 210~3 810a BP和2 540~1 540a BP,因为地层存在缺失,该探槽中揭示的事件可能不完整。综合3个探槽结果,全新世以来丽江-小金河断裂中段有3次古地震,分别发生在7 940~7 210a BP、4 740~4 050a BP和1 830~1 540a BP,其大震复发大致符合准周期模式,平均复发间隔约3 000a,震级达M7.5。考虑到丽江-小金河断裂中段较强的晚第四纪活动和较长的大震离逝时间,其未来地震危险性值得关注。  相似文献   

3.
通过对色尔腾山山前断裂乌句蒙口 -东风村段的遥感资料解释、野外地质地貌考察 ,并通过对重点地段的古地震探槽开挖 ,获得了该断裂段晚更新世晚期以来的垂直位移速率是 0 88~ 1 83mm a ,全新世中期以来的垂直位移速率是 0 89mm a。通过 2个大型探槽的开挖、古地震事件分析和相关堆积物的断代研究 ,以及用逐次限定方法分析整个断层段上的古地震事件 ,认定该断裂段上全新世以来发生了 5次古地震事件 :事件 1发生在距今 90 0 0± 130 0年 ,事件2发生在距今 6 5 0 0± 5 0 0年 ,事件 3发生在距今 5 5 70年左右 ,事件 4发生在距今 4 2 0 0± 30 0年 ,事件 5发生在距今 32 5 0± 2 5 0年。晚更新世晚期到距今 1万年之间 ,古地震事件很不完整。全新世以来的 5次古地震事件表现出一定的丛集特征。最早的一丛事件发生在距今 890 0年左右 ,第2丛发生在距今 6 5 0 0~ 5 70 0年之间 ,第 3丛事件发生在距今 32 5 0~ 4 2 0 0年之间。第 1丛与第 2丛古地震事件之间间隔为 2 4 0 0年左右 ,而第 2丛与第 3丛古地震事件之间仅间隔 15 70年左右。距今 32 5 0年以来 ,该断裂段上还没有发生过错断地表的地震事件 ,已经超出了古地震丛之间的重复间隔。因此 ,它是色尔腾山前活动断裂带上具备潜在危险的一个活动断裂段。  相似文献   

4.
礼县 -罗家堡断裂带晚更新世以来有过明显活动。在礼县—罗家堡段和天水镇—街子口段直接错断全新世地层。断裂沿线地表陡坎发育 ,水系被左旋位错。结合沿该断裂带广泛分布的地震滑坡、砂土液化等 ,认为礼县 -罗家堡断裂带是 1654年天水南 8级地震的发震构造。该断裂晚更新世以来的平均水平位错速率为 0 95mm/a ,平均垂直位移速率为 0 35mm/a ,垂直位移速率约为水平位移速率的 1/ 3。这个比值与一次断裂突发性垂直位错量 ( 1 9m)与水平位错量 ( 5 2m)的比值基本吻合  相似文献   

5.
2014年2月12日新疆于田发生MS7.3地震,震中位于平均海拔5 500m的藏北地区。本文利用国产GF-1号卫星对震前、震后数据进行对比解译,快速获取了该次地震的同震地表破裂带,破裂带沿硝尔库勒盆地南缘的多个洪积扇体后缘发育,断续延伸,走向NEE62°,以弧形断层陡坎为主,未见明显水平位错,长度约9km。阿尔金断裂在硝尔库勒盆地共发育3条分支断裂,均发育古地震破裂带,其中沿盆地北缘和中部的分支断裂未见同震破裂,最新地表破裂带位于南缘断裂的东北段。结合震后余震分布,确认该次地震的发震构造为硝尔库勒南缘断裂,是青藏高原北部阿尔金断裂带西段尾端张性区的一次新破裂事件。本次应用也展现了国产高分辨率数据在中国西部高海拔地区地震应急工作中所发挥的重要作用。  相似文献   

6.
程理  李光涛  吴昊  余建强  苏刚 《中国地震》2020,36(2):211-220
中甸-大具断裂马家村-大具段位于哈巴雪山北麓及玉龙雪山以北的大具盆地内,总体走向310°~320°,根据卫星影像解译和详细的野外地质地貌调查,认为中甸-大具断裂马家村-大具段自第四纪以来长期活动,横跨断裂的水系右旋位错量可分为8.5~12m、22m左右、47m左右、200~280m、500~510m和1000m左右6个等级。在大具盆地内发现了长约600m的地震地表破裂带,这是该断层段在全新世活动的直接地质证据,在破裂带南东端附近开挖的探槽揭示出自晚更新世以来断裂存在三期活动,可能对应3次地震事件,结合前人在该断裂段获得的地质剖面和断错地貌面测年结果,分析认为马家村-大具段自晚更新世以来至少发生了3次古地震事件,发生时间分别为4910~45 a BP、7000 a BP左右和32.93~19.96ka BP,利用垂直同震位移值估算了水平同震位移量,最终得出每次地震事件的震级为7.5级左右。  相似文献   

7.
汶川8.0级地震发震断层的累积地震位错研究   总被引:1,自引:0,他引:1  
2008年5月12日,四川省汶川县内发生MS8.0地震。此次地震沿龙门山中央断裂产生1条长达200km的同震地表破裂带。文中选择位于地震地表破裂带北段的南坝镇、凤凰村以及南段的映秀镇这3个地点,以被断层错断的河流阶地为研究对象,对多级阶地面上的地震地表破裂及断层陡坎地貌进行了野外实测工作。经过测量数据的计算和分析,得到了各级阶地上断层陡坎的高度,该值即为该阶地记录的地震断层的累积垂直位错量。若以本次地震的垂直位错量作为古地震位错量的均值,则可计算得到每级阶地累积的地震次数。研究结果表明,各点T1阶地形成以来仅经历过1次事件,即本次地震事件;T2阶地形成以来约经历了5次事件;T3阶地形成以来约经历了9~11次事件;T4阶地形成以来约经历了20次事件。在本文研究的基础上,结合前人的阶地测年数据,则可获得古地震复发间隔的可靠数据  相似文献   

8.
中卫-同心断裂带全新世古地震研究   总被引:18,自引:3,他引:18       下载免费PDF全文
闵伟  张培震  邓起东 《地震地质》2001,23(3):357-366
通过对中卫 -同心断裂带中段和西段 7个新探槽的古地震研究 ,并结合前人对中段古地震的研究结果 ,分析确定出 140 0 0a以来中卫 -同心断裂带共发生 6次古地震事件。其中仅有 1次是破裂全带的 ,发生在晚更新世末 ,其它都为全新世以来的次级破裂事件 ,3次破裂中段 ,两次破裂西段。公元 170 9年 7 级历史地震只破裂中段 ,因此推断只破裂中段或西段的古地震震级约为 7 级左右 ;破裂全带的古地震震级应为 8级左右。从时间上看 ,这 6次事件的分布是不均匀的 ,但没有明显的丛集现象  相似文献   

9.
利用无人机摄影测量技术航测天景山断裂孟家湾的地表地形地貌数据,以获取的数字高程模型为基础,通过构造地貌精细解译进一步提取地震断层的水平位移量及垂直位错量,计算断层的平均水平滑动速率,并分析判识了古地震事件。结果表明:①研究区发育3期河流阶地T3、T2、T1,且均被断错,最新的冲沟T0未见错动;②在T1阶地面上提取水平位移量为(7.77±0.98)m,计算得到全新世中期以来的平均水平滑动速率为0.86~0.91 mm/a;③在T1阶地面上跨陡坎提取垂直位错量为(0.61±0.11)m,其坡度存在2个明显拐点,代表2次地表破裂型地震事件,推测在12000 a前,即晚更新世末期或全新世初期以来至少发生过2次地表破裂型地震。  相似文献   

10.
海阳断裂是胶东半岛NE向牟平 -即墨断裂带东部一条规模较大的断裂 ,尽管晚更新世以来该断裂的地表断错活动总体上已基本停息 ,但东石兰沟段在晚更新世晚期以来仍有断错地表的活动。最后一次断错地表的活动发生在距今 3 7~ 1 2万年 ,但接近 1 2万年。地表破裂长度约6 5km ,活动段长度 8km。地表断错以走滑活动为主 ,可见最大倾滑位移 0 2m ;根据断层擦痕侧伏角推测最大水平位移 1 13m。最后一次断错地表的活动若以距今 1 2万年计算 ,则最大平均倾滑速率为 0 0 17mm/a ;最大平均右旋走滑速率为 0 0 94mm/a。野外观测到该活动段的断错活动表现为突发断错 ,根据地震地表破裂参数、活动段长度与地震的关系 ,估计其最大潜在地震为 6 级  相似文献   

11.
漳县活动断裂带的古地震研究   总被引:1,自引:0,他引:1  
本文介绍了作者对西秦岭北缘断裂带漳县段古地震事件的调查研究结果。该段断裂自晚更新世至全新世以来活动强烈,在全新世早期和中期各发生一起古地震事件,其大震重复间隔为5000年左右。  相似文献   

12.
Hexi Corridor is located at the northeastern margin of the Tibetan plateau. Series of late Quaternary active faults are developed in this area. Numerous strong earthquakes occurred in history and nowadays. Jinta Nanshan fault is one of the boundary faults between the Qinghai-Tibet block and the Alxa block. The fault starts from the northwest of Wutongdun in the west, passes through Changshan, Yuanyangchi reservoir, Dakouzi, and ends in the east of Hongdun. Because the Jinta Nanshan fault is a new active fault in this region, it is important to ascertain its paleoearthquakes since late Pleistocene for the earthquake risk study. Previous studies were carried out on the western part, such as field geomorphic investigation and trench excavation, which shows strong activity in Holocene on the western segment of Jinta Nanshan fault. On the basis of the above research, in this paper, we carried out satellite image interpretation, detailed investigation of faulted landforms and differential GPS survey for the whole fault. Focusing on the middle-eastern part, we studied paleoearthquakes through trench exploration on the Holocene alluvial fan and optical luminescence dating. The main results are as follows:Early Pleistocene to late Pleistocene alluvial strata are widely developed along the fault and Holocene sediment is only about tens of centimeters thick. The Jinta Nanshan fault shows long-lasting activity since late Quaternary and reveals tens of centimeters of the lowest scarp which illustrates new strong activity on the middle-east segment of this fault. Since late Pleistocene, 4 paleoearthquakes happened respectively before(15.16±1.29) ka, before(9.9±0.5) ka, about 6ka and after(3.5±0.4) ka, revealed by 4 trenches, of which 2 are laid on relatively thicker Holocene alluvial fan. Two events occurred since middle Holocene, and both ruptured the whole fault.  相似文献   

13.
The Yumen Fault lies on the west segment of the north Qilian Fault belt and adjacent to the Altyn-Tagh Fault,in the north margin of the Tibet Plateau.The tectonic location of the Yumen fault is special,and the fault is the evidence of recent activity of the northward growth of Tibetan plateau.In recent twenty years,many researches show the activity of the Yumen Fault became stronger from the early Pleistocene to the Holocene.Because the Yumen Fault is a new active fault and fold belt in the Qilian orogenic belt in the north margin of the Tibet Plateau,it is important to ascertain its slip rate and the recurrence interval of paleoearthquakes since the Late Pleistocene.Using the satellite image interpretation of the Beida river terrace,the GPS measurement of alluvial fans in front of the Yumen Fault and the trench excavation on the fault scarps,two conclusions are obtained in this paper.(1) The vertical slip rate of the Yumen Fault is about 0.41~0.48mm/a in the Holocene and about 0.24~0.30mm/a in the last stage of the late Pleistocene.(2) Since the Holocene epoch,four paleoearthquakes,which happened respectively in 6.12~10.53ka,3.6~5.38ka,1.64~1.93ka and 0.63~1.64ka,ruptured the surface scarps of the Yumen Fault.Overall,the recurrence interval of the paleoseismic events shortens gradually and the activity of the Yumen Fault becomes stronger since the Holocene.Anther characteristic is that every paleoearthquake probably ruptured multiple fault scarps at the same time.  相似文献   

14.
More attention has been paid to the late Quaternary activity of the boundary fault of the Sichuan-Yunnan block in eastern Tibet. The Lijiang-Xiaojinhe Fault (LXF) locates along the boundary of the northwest Sichuan and central Yunnan sub-blocks in the Sichuan-Yunnan block. Clear displaced landforms show that the fault has undergone strong late-Quaternary activity. However there is no surface-rupturing earthquake occurring on the LXF in the historical record. The LXF crosses the city of Lijiang, one of the most important tourist cities in Southwest China. The rupture behavior on this fault remains unclear and it is hard to assess its seismic hazard in the future. In this study, on the base of the interpretation of high-resolution satellite imagery, we chose the middle segment of the LXF and dug three trenches at Muzhuda, Hongxing, and Gantangzi sites to constrain the ages of paleoearthquakes combined with radiocarbon dating and OxCal modeling. The Muzhuda trench shows that at least three events occurred on the middle segment of the LXF at 7 940~6 540a BP, 4 740~4 050a BP and 1 830~420a BP, respectively. The Hongxing trench indicates that the LXF underwent two events at 5 120~3 200a BP and 2 100~1 220a BP. The Gantangzi trench reveals at least three paleoearthquakes at 44 980~17 660a BP, 7 210~3 810a BP and 2 540~1 540a BP, respectively. The events in the Gantangzi trench might be incomplete because of stratigraphic gap. These three trenches indicate that three events occurred on the middle segment of the LXF in the Holocene at 7 940~7 210a BP, 4 740~4 050a BP and 1 830~1 540a BP, respectively. Large earthquakes on the middle segment of the LXF appear to fit the quasi-periodic model with the mean recurrence interval of~3 000a and the estimated magnitude 7.5. Given the strong late-Quaternary activity of the middle segment of the LXF and a long elapsed time, we propose that the middle segment of the LXF might have a high seismic hazard potential in the near future.  相似文献   

15.
The Xiaojiang fault zone is located in the southeastern margin of the Tibetan plateau, the boundary faults of Sichuan-Yunnan block and South China block. The largest historical earthquake in Yunnan Province, with magnitude 8 occurred on the western branch of the Xiaojiang Fault in Songming County, 1833. Research on the Late Quaternary surface deformation and strong earthquake rupture behavior on the Xiaojiang Fault is crucial to understand the future seismic risk of the fault zone and the Sichuan-Yunnan region, even crucial for the study of tectonic evolution of the southeastern margin of Tibetan plateau. We have some new understanding through several large trenches excavated on the western branch of the Xiaojiang fault zone. We excavated a large trench at Caohaizi and identified six paleoseismic events, named U through Z from the oldest to the youngest. Ages of these six events are constrained at 40000-36300BC, 35400-24800BC, 9500BC-500AD, 390-720AD, 1120-1620AD and 1750AD-present. The Ganhaizi trench revealed three paleoearthquakes, named GHZ-E1 to GHZ-E3 from the oldest to the youngest. Ages of the three events are constrained at 3300BC-400AD, 770-1120AD, 1460AD-present. The Dafendi trench revealed three paleoearthquakes, named E1 to E3 from the oldest to the youngest, and their ages are constrained at 22300-19600BC, 18820-18400BC, and 18250-present. Caohaizi and Ganhaizi trenches are excavated on the western branch of the Xiaojiang Fault, the distance between them is 400m. We constrained four late Holocene paleoearthquakes with progressive constraining method, which are respectively at 500-720AD, 770-1120AD, AD 1460-1620 and 1833AD, with an average recurrence interval of 370~440a. Large earthquake recurrence in the late Holocene is less than the recurrence interval of~900a as proposed in the previous studies. Thus, the seismic hazard on the Xiaojiang Fault should be reevaluated. We excavated a large trench at Dafendi, about 30km away south of Caohaizi trench. Combining with previous paleoseismological research, it is found that the western branch of Xiaojiang Fault was likely to be dominated by segmented rupturing in the period from late of Late Pleistocene to early and middle Holocene, while it was characterized by large earthquakes clustering and whole segment rupturing since late Holocene.  相似文献   

16.
大凉山断裂带是大型走滑断裂鲜水河-小江断裂系的重要组成部分,其活动性是认识和探讨青藏高原东南缘现今地震活动和构造变形机制的重要基础资料。相较于中段和南段,关于大凉山断裂带北段活动性的相关研究成果,尤其是古地震资料非常缺乏。文中基于野外地质地貌调查,在石棉断裂联合村处开挖了一组(2个)探槽,揭露出断裂全新世活动的直接证据。通过古地震分析和炭样加速器质谱仪(AMS)测年,共获得了4次古地震事件:事件E1:20925—16850BC;事件E2:15265—1785BC;事件E3:360—1475AD;事件E4:1655—1815AD。其中包括全新世以来的3次事件,最新2次事件的复发间隔骤然缩短,反映断裂活动可能正在加剧。  相似文献   

17.
The Ganzi-Yushu Fault, the boundary of Bayan Har active tectonic block, Qiantang active tectonic block and Sichuan-Yunan active tectonic block, is a sinistral strike-slip fault zone with intensive Holocene activity. Thus, the study of activity characteristics and rupture behavior of paleoearthquakes in the late Quaternary on the Ganzi-Yushu Fault is of fundamental importance for understanding the future seismic risk of this fault. The southeast section of Ganzi-Yushu Fault is made up of three segments of Ganzi, Manigange and Dengke, where a MS7.3 earthquake in 1866, a MS7.7 earthquake in 1854 and a MS7.3 in 1896 occurred, respectively. There is still lack of in-depth study on the active features and the cascading rupture possibility of these segments, which hindered the evaluation of seismic risk for the southeast section of Ganzi-Yushu Fault. By the means of field geological survey and micro topography measurement, this paper studied the geological and geomorphological features of the southeast section of the Ganzi-Yushu Fault. The results show that the Ganzi and Dengke segments show obvious extension movement, in addition to the left-lateral movement. For Manigange segment, the characteristics of the movement are mainly left-lateral strike-slip and thrusting, and the maximum vertical displacement of the Holocene strata is greater than 2m. In part areas, the movement is normal faulting, which perhaps relates to the left stepping zone in the local stress environment. Therefore, combining the research results such as the fracture distribution in different motion characteristics, rupture behavior of paleoearthquakes, and the distribution of historical earthquake surface ruptures, we divide the southeast section of Ganzi Yushu Fault into Ganzi, Manigange and Dengke segment, and consider the Yakou and the Dengke Basin as the stepovers and the segments' boundaries. As the small scale of impermanent barriers including Dengke Basin and the ridge near Yakou, of which the width is about 1~2km, they may be broken through in great earthquake rupture in future. A trench was excavated in Zhuqing township to investigate the paleoearthquakes on the Manigange segment, radiocarbon dating was employed and 3 paleoseismic events were revealed in the Zhuqing trench, which are the seismic events occurring respectively at 3875~3455BC, after 775BC, and the latest one that ruptured the surface. Compared with the previous results of paleoseismology in the southeast section of Ganzi-Yushu Fault, it is found that the paleoseismic events in the Manigange segment are obviously different with that in Ganzi segment and Dengke segment. Due to the lack of sufficient data on the southeast section of the Ganzi-Yushu Fault, it still needs further discussion whether the cascade-rupturing between these segments exists.  相似文献   

18.
Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.  相似文献   

19.
根据断层位错和地貌位置,麦凯段断层陡坎分为三组,它们是三次史前地震的产物。根据位错量和陡坎长度对比,史前地震的震级大约为7级。利用扩散方程模拟史前7级地震发生的重复时间间隔是5—11千年  相似文献   

20.
The relationship between the latest activity of active fault and seismic events is of the utmost importance. The Tan-lu fault zone in eastern China is a major fault zone, of which the active characteristics of the segments in Jiangsu, Shandong and Anhui has been the focus of research. This study takes the Dahongshan segment of the Tanlu Fault in Sihong County as the main research area. We carried out a detailed geological survey and excavated two trenches across the steep slope on the southwest side of the Dahongshan. Each trench shows fault clearly. Combining the comparative analysis of previous work, we identified and cataloged the late Quaternary deformation events and prehistoric earthquake relics, and analyzed the activity stages and behavior of this segment. Fault gonge observed in the trench profiles shows that multiple earthquake events occurred in the fault. The faulting dislocated the Neogene sandstone, black gravel layer and gray clay layer. Brown clay layer is not broken. According to the relations of dislocated stratums, corresponding 14C and OSL samples were collected and dated. The result indicates that the Dahongshan segment of the Tanlu Fault has experienced strong earthquakes since the late Quaternary. Thrust fault, normal fault and strike-slip fault are found in the trenches. The microscopic analysis of slices from fault shows that there are many stick-creep events taking place in the area during the late Quaternary. Comprehensive analysis shows that there have been many paleoearthquakes in this region since the late Quaternary, the recent active time is the late Pleistocene, and the most recent earthquake event occurred in(12~2.5ka BP). The neotectonic activity is relatively weak in the Anhui segment(south of the Huaihe River)of Tanlu fault zone. There are difficulties in the study of late Quaternary activity. For example, uneven distribution of the Quaternary, complex geological structure, larger man-made transformation of surface and so on. The progressive research may be able to promote the study on the activity of the Anhui segment of Tanlu fault zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号