首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 565 毫秒
1.
To investigate the potential of tourmaline as a geochemical monitor, a comprehensive dataset on major, minor and trace element concentrations as well as Fe3+/ΣFe ratios of tourmaline is presented. The dataset includes samples from five plutonic complexes related to diverse magmatic to hydrothermal stages of the Cornubian Batholith (SW England). Tourmaline composition found in barren and cassiterite-bearing samples include all three primary tourmaline groups and tourmaline species with the general endmembers schorl, dravite, elbaite, uvite, feruvite, foitite and Mg-foitite.Based on textures and compositions, it is possible to distinguish not only between late-magmatic and hydrothermal tourmaline, but also between several formation stages. Hence, tourmaline monitors late-magmatic processes and the partitioning of elements during exsolution of an aqueous phase. For example, in hydrothermal tourmaline Sn is strongly enriched, while Ti, Cr, V and Sc are depleted compared to late-magmatic tourmaline of the same sample. Several tourmaline generations that precipitated from magmatic fluids can be distinguished with differing major and minor elements and REE patterns depending on the composition of the melt from which they were expelled from. Strongly zoned tourmaline allows for unraveling the hydrothermal history of a distinct location including ore precipitation. The precipitation of SnO2 in the study area was probably caused by mixing between acidic, reduced, Sn-bearing magmatic fluids and oxidized meteoric fluids, which is in agreement with London and Manning (1995) and Williamson et al. (2000). Hence, the ability of tourmaline composition to monitor changes in Sn concentration and redox conditions in hydrothermal fluids has potential as an exploration tool.  相似文献   

2.
中条山地区胡-篦型层控铜矿床角砾岩的特征及成因探讨   总被引:6,自引:0,他引:6  
中条山铜矿区位于华北地台南缘,与胡-篦型层控铜矿床空间上紧密伴生。且广泛发育有一套角砾岩。根据角砾岩产状可分为两个层位,一是矿体底盘角砾岩,仅分布在老宝滩—店头一带,出露规模较大,基本不含矿;二是含矿层角砾岩,分布范围广,规模较小,矿化强烈。根据角砾岩和胶结物的成分及结构特征,笔者认为本区角砾岩是与海底热液喷气活动有关的热液沉积角砾岩。  相似文献   

3.
藏南过铝花岗岩中电气石的矿物化学特征及成因意义   总被引:2,自引:0,他引:2  
讨论了藏南过铝花岗岩中电气石的地质产状、矿物学和矿物化学特征。结果表明:(1)在以氧原子数为24.5计算的化学式中,电气石的(Fe+Mg)/Mg比值在2.32~5.37之间,指示花岗岩和伟晶岩中的电气石均为黑电气石系列,而且属镁电气石—铁电气石系列中的较富铁电气石的成员;(2)电气石的FeO/(FeO+MgO)值高达0.70~0.89,与贫Li花岗岩接近,Al-Al50Fe50-Al50Mg50图解和Fe-Mg-Ca图解投点均位于贫Li花岗岩区,属于贫Li花岗岩有关的电气石;(3)TiO2-MnO/CaO-MgO/FeO三元图解可判定属于第Ⅰ类,即MgO和FeO含量同步消长,且较贫Mg富Fe,而MnO和TiO2含量为异步消长,这与电气石的FeO/(FeO+MgO)值所反映的性质相同;(4)地质产状、矿物学及矿物化学揭示的成因信息表明藏南过铝花岗岩中的电气石为酸性侵入体岩浆期后热液成因。  相似文献   

4.
Multiple large mineralized breccia pipes (Cu grades up to >10%; individual pipes with >10 × 106 metric tons of Cu) are prominent, if not dominant, features in the three giant Andean Cu deposits of Los Pelambres, Los Bronces-Rio Blanco, and El Teniente of central Chile. At Los Bronces-Rio Blanco, over 90% of the >50x 106 metric tons of hypogene Cu occurs within the matrix of breccias and/or clasts and wall rock altered in association with the formation of these breccias, while at the other two deposits a lesser but still significant amount of Cu ore also is directly related to breccias. At both Los Pelambres and Los Bronces-Rio Blanco, high-grade (>0.5%) Cu occurs in zones of potassic alteration characterized by stockwork biotite veining and intense biotitization associated spatially, temporally, and genetically with biotite breccias. At Los Bronces-Rio Blanco, high-grade ore also occurs in younger tourmaline breccia pipes, emplaced both within and around the older central biotite breccia complex and potassic alteration zone after a period of uplift and erosion. Potassic alteration, sericitization, silicification, and mineralization of clasts in these tourmaline breccias occurred during their formation. At El Teniente, a significant amount of high-grade Cu ore also occurs in different tourmaline-rich breccias, including the marginal portion of the Braden breccia pipe and a related zone of quartz-sericite alteration that surrounds this pipe. Small, shallow, weakly mineralized or barren silicic porphyry intrusions occur in each of these three deposits, but their main role has been to redistribute rather than emplace mineralization.

The mineralized breccia pipes in each deposit were emplaced into early and middle Miocene volcanic and plutonic rocks during the late Miocene and Pliocene by the expansion of boiling aqueous fluids. Fluid-inclusion and stable-isotope data indicate that the high-temperature, saline, metalrich fluids that produced the brecciation, precipitated the Cu ore in the matrix of the breccias, and generated the associated alteration and mineralization in clasts and wall rock were magmatic in origin. These magmatic fluids were not derived from the early and middle Miocene host plutons, which already were solidified at the time of breccia emplacement. Sr- and Nd-isotopic compositions of breccia-matrix minerals indicate that breccia-forming fluids were exsolved from magmas that were isotopically transitional between older volcanic and plutonic host rocks and younger silicic porphyry stocks, dikes, and extrusives. The fact that the roots of the breccias have not yet been encountered implies that these magmas cooled at depths >3 km to form plutons not yet exposed at the surface.

The generation of the multiple mineralized breccias at each deposit occurred over a relatively short (but still significant) time period of 1 to 3 million years, during the final stages of existence of the long-lived (7gt;15 m.y.) Miocene magmatic belt in central Chile. The decline of magmatic activity in this belt was tectonically triggered, as subduction angle decreased in association with the subduction of the Juan Fernandez Ridge. This caused a decrease in the sub-arc magma supply and subsequently eastward migration of the magmatic arc, as well as crustal thickening, uplift, and erosion, which led to the superposition of younger and shallower alteration and mineralization events on older and deeper events in each deposit.

The giant Cu deposits of central Chile cannot be explained by a static model in which their size is a function of the mass of a single pluton or the longevity of a single hydrothermal convection system. These deposits are giant because they were produced by multistage processes involving the formation, over a period of 1 to 3 million years, of multiple superimposed mineralized breccias and associated alteration zones resulting from the exsolution of metalrich magmatic fluids from independent magma batches cooling at depths >3 km. Neither an unusually large magma supply nor Andean magmas of unusually high Cu content is required to produce the sequence of multiple mineralization  相似文献   

5.
从区域尺度和矿床尺度两个方面论述了斑岩铜矿系统的特点.区域尺度上:1)斑岩铜矿多呈矿带或成矿域出现,带内众多斑岩铜矿呈簇或组合呈线状产出,这是构造作用控制下不连续岩株呈线状侵入就位的表现; 2)主要产于俯冲作用形成的岛弧和陆缘环境,构造应力属挤压但与中等拉张作用也有关,最近的研究证实大陆碰撞造山带也是斑岩型矿床产出的重要环境;3)其形成是通过具氧化性,S饱和,富含金属的岩浆熔体侵入所致,岩浆侵入作用为成矿提供了物质来源; 4)围岩的物理性质以及化学组成对矿床的规模、品位以及矿化类型具有极强的控制作用,碳酸盐岩围岩主要赋存近源Cu-Au夕卡岩矿床,少量远程Zn-Pb或Au夕卡岩矿床,在夕卡岩前缘还形成交代型Cu和Zn-Pb-Ag±Au矿床.矿床尺度上:1)含矿斑岩与斑岩型矿床时空相依,成因相联,是斑岩铜矿重要的含矿母岩和金属-S的可能载体;2)火山角砾岩筒在深部与矿化体平行或斜交,其与围岩的接触带,一般也是富硫金成矿带的一部分;3)与矿化有关的斑岩成矿系统内的角砾岩主要有爆发角砾岩、侵入角砾岩、爆发侵入角砾岩、热液角砾岩和热液卵石脉;4)斑岩铜矿系统中的热液蚀变自下而上可分为不含矿的早期钠质-钙质蚀变→含矿的钾化→绿泥石化-绢云母化→绢云母化→高级泥化,热液蚀变互相套合,矿化互相叠加;5)岩帽是斑岩型热液-成矿活动-蚀变体系的重要组成部分,是重要的找矿标志.  相似文献   

6.
The Duolong district is located in the south Qiangtang terrane of Tibet and is the most significant ore cluster within the Bangongco-Nujiang metallogenic belt. Duolong contains one giant, three large and two medium to small-sized porphyry (±epithermal ± breccia) copper deposits and several other mineralized porphyry bodies. All deposits are closely associated with early Cretaceous (123–115 Ma) intermediate-felsic intrusions. Naruo is a poorly studied porphyry-breccia copper deposit in the north of the Duolong district. Hydrothermal alteration surrounding the ore-bearing granodiorite at Naruo is characterized by an inner potassic zone and an outer propylitic zone, overlapped locally by minor phyllic and argillic alteration assemblages. A detailed paragenetic study has identified five distinct hydrothermal veins (M, A, B, C, D) within the porphyry system. Hydrothermal B veins are strongly related to copper mineralization. Strong propylitic alteration is also observed throughout the hydrothermal breccias identified at Naruo. Sandstone breccia, diorite-bearing breccia and granodiorite-bearing breccia were identified according to the distribution and composition of clasts. U-Pb zircon dating has determined the ages of the ore-bearing granodiorite (121.6 ± 1.3 Ma) and a barren intrusion (115.5 ± 1.1 Ma) within the porphyry system, diorite clasts (122.3 ± 0.9 Ma) and later diorite matrix (120.5 ± 1.0 Ma) in the hydrothermal breccia system, suggesting that with the exception of the late barren intrusion, they all belong to the same mineralizing event at Duolong. The geological and geochemical evidence presented in this study suggest that the porphyry and breccia systems may have originated from the same magma source, but are now spatially independent.  相似文献   

7.
东秦岭地区是我国重要的花岗伟晶岩区及稀有金属成矿区.电气石在东秦岭各类花岗伟晶岩中广泛发育,通常在无矿化伟晶岩、铍矿化及锂矿化伟晶岩中呈黑色-深蓝色.本文旨在通过各类伟晶岩中电气石的对比研究揭示电气石地球化学特征对东秦岭伟晶岩矿化类型的指示作用.本文所研究电气石为作为东秦岭各类伟晶岩贯通矿物的黑电气石系列.在双峰村、碾...  相似文献   

8.
A microprobe study has been carried out on the chemical composition of tourmaline from the Yindongzi and Tongmugou stratabound Pb-Zn ore deposits, eastern Qinling, China. Tourmaline was analysed from a variety of rock types representative of its various occurrences associated with the ore bodies. All the tourmalines studied here belong to the schorl-dravite series. Most are of hydrothermal origin with Mg > Fe and Na > Ca. Some detrital cores of tourmaline have been recognized from their geometry and chemistry, with Fe > Mg. The chemical trends from core to rim in zoned grains suggest a multi-stage model for the growth of tourmaline and genesis of the ore bodies. The first stage was represented by a more Mg-rich hydrothermal fluid in the submarine hydrothermal system, producing Mg-rich tourmalines by selective replacement of clay-rich sediments close to the sediment-water interface. The second stage was dominated by Fe-rich hydrothermal fluid and resulted in overgrowth of Fe-rich tourmaline rims. This stage also led to the nucleation and growth of new tourmaline crystals and was responsible for the formation of the main massive sulphide orebodies. Finally, a further period of hydrothermal activity or a metamorphic event led to the formation of an additional rim of Mg-rich tourmaline.  相似文献   

9.
祖母绿是由微量Cr和/或V致色的绿色绿柱石。位于云南省麻栗坡县的大丫口祖母绿矿床是中国重要的祖母绿矿床,近年来取得了一系列的研究进展,但与祖母绿相关的电气石的研究工作还未展开。本文以大丫口矿床含祖母绿矿脉和非矿脉中的电气石为研究对象,在详细的野外调查和岩相学研究基础上,对电气石进行成分测试,旨在探讨电气石成因、查明物质来源和流体演化过程,进一步探究大丫口祖母绿矿床的成矿机制。结果显示:含矿脉电气石单位分子中Na含量为0.62~0.79 apfu,Al含量为5.36~6.17 apfu,Fe/(Fe+Mg)值为0.31~0.41;非矿脉电气石单位分子中Na含量为0.64~0.76 apfu,Al含量为5.66~6.38 apfu,Fe/(Fe+Mg)值为0.14~0.34。大丫口电气石具有富Mg、Y位(Y-site)上呈低Al或无Al的特征,属于碱族镁电气石,但是含矿脉电气石则显示更高的Fe/(Fe+Mg)值。电气石成分的差异可能主要与形成环境有关,电气石的成分差异具有指示祖母绿是否富集的潜力。大丫口电气石具有成分分带且V2O3含量为0.65%~4.76%,其形成与持续的热液流体交代围岩有关。大丫口矿床是一个岩浆起源的动态热液体系,流体通过碱交代作用参与水岩反应萃取围岩中的成矿物质。早期流体的物质组成以源于花岗质熔体的Si、Al、Be、F、P为主,而随着演化的进行,Ca、V等来自地层的成分逐渐增加。研究表明,铍的氟化物或氟铍络合物是大丫口成矿流体中Be的一种重要的迁移方式。萤石、氟磷灰石等含氟矿物的结晶促使铍的氟化物或氟铍络合物分解,流体中氟元素的减少可能是大丫口祖母绿成矿的重要机制之一。  相似文献   

10.
广西大厂地区笼箱盖黑云母花岗岩与区内晚白垩世锡多金属成矿作用在时空上密切相关。岩相学特征表明,笼箱盖黑云母花岗岩中的电气石可以分为三类:1)浸染状电气石; 2)石英-电气石囊; 3)电气石-石英脉。本文利用电子探针和激光剥蚀等离子体质谱系统测定三种不同产状电气石的化学组成。分析结果显示,三种产状的电气石均具有高的Fe/(Fe+Mg)和Na/(Na+Ca)比值,主体属于碱基亚类铁电气石。浸染状电气石为岩浆晚期结晶,其Fe/(Fe+Mg)比值变化于0. 85~0. 94,随着岩浆分异,电气石逐渐富集Li、F、Fe和Sn等元素。与浸染状电气石相比,石英-电气石囊中早阶段电气石具有低的Fe/(Fe+Mg)比值,高的V、Co和Sr含量,可能反映了岩浆演化晚期出现的不混溶富硼熔/流体对早期黑云母和长石的交代作用,从而使囊中早阶段电气石继承部分被交代矿物的化学组成特征;石英-电气石囊中晚阶段电气石的化学组成变化较大(如Li、F、Mg、Al、V、Fe和Zn),与热液成因电气石的推论一致。与浸染状和囊状电气石相比,石英脉中的电气石具有高的Fe/(Fe+Mg)和Na/(Na+Ca)比值;微量元素组成与囊状电气石相似。就成矿元素锡而言,三种产状的电气石均具有相对高的锡含量,与其他地区锡成矿花岗岩中电气石的成分特征相似。但是,从岩浆晚期到热液阶段,大厂地区电气石的锡含量并没有显著升高,可能反映了早期岩浆热液流体对熔体锡有限的萃取作用。  相似文献   

11.
Fluidization processes based on experiments are reviewed to gain some useful insights and comparisons with those that occur in hydrothermal systems. Field and petrographic work, and microscope observation were carried out on samples from the Qiyugou Au-bearing breccia pipes from the East Qinling region, Henan Province. Evidence from macro- and micro-textures suggests that the style of breccias in the Qiyugou area can be grouped into three types: (1) jigsaw fit-stockwork texture, in which the interval between clasts is marked by fractures or filled with calcite or quartz veins; (2) larger breccias that are supported by smaller breccias, rock flour and alteration materials; in this type clasts moved over short distances, creating open spaces; (3) fluidized texture, where the clasts of different lithologies have rounded shapes. These observations are compared with those resulting from experiments on fluidization processes. The results of this comparison suggest that fluidization is an important geological process in the formation of the Qiyugou Au-bearing breccia pipes and gold mineralization. In addition, fluidization processes such as expansion, bubbling, slugging, channeling and spouting must have contributed to the formation of the pipes and were conducive to the development of gold mineralization. In the Qiyugou breccia pipes, gold mineralization occurs as disseminations, in stockwork veins, and open space infills. The ore zones form subparallel sheets that are nearly perpendicular to the walls of the pipes.  相似文献   

12.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

13.
Zoned tourmaline(schorl-dravite) in the matrix of hydrothermal explosive breccia and ore veins in gold deposits,Chita region.Eastern Transbaikalia.Russia,are associated with Na- and K-rich porphyry-type subvolcanic intrusives.δ18O values of tourmaline from three gold deposits(Darasun. Talatui,Teremkinskoye) are +8.3‰,+7.6‰,and +6.0‰and calculatedδ18O values of fluids responsible for the tourmalinization are +7.3‰,+7.7‰,and +4.2‰,respectively.These data imply an igneous fluid source,except at the Teremkin deposit where mixing with meteoric water is indicated.Wide ranges of Fe3+/Fetot,and the presence of vacancies characterize the Darasun deposit tourmaline indicating wide ranges of f(O2) and pH of mineralizing fluids.Initial stage tourmalines from the gold deposits of the Darasun ore district are dravite or high mg schorl.Second stage tourmaline is characterized by oscillatory zoning but with Fe generally increasing towards crystal rims indicating decreasing temperature.Third stage tourmaline formed unzoned crystals with xMg(mole fraction of Mg) close to that of the hrst stage tourmaline,due to a close association with pyrite and arsenopyrite.From Fe3+/Fetot values,chemical composition and crystallization temperatures.logf(O2) of mineralizing fluids ranged from ca.—25 to—20. much higher than for the gold-bearing beresite—listvenite association,indicating that tourmalinization was not related to gold mineralization.  相似文献   

14.
山西省中条山铜矿田电气石与电气石岩的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
本文通过对中条山铜矿田电气石和电气石岩地质产状、岩相学和矿物学、矿物化学等特征的研究,指出本区有三种成因类型的电气石:(1)北峪酸性侵入体岩浆期后热液成因电气石;(2)中条群地层中变质热液形成的电气石;(3)赋矿岩石和近矿围岩中热液蚀变电气石。第(3)类电气石具有特征的产状、矿物化学和矿物共生组合标型,是重要的找矿标志  相似文献   

15.
邵世才 《矿物学报》1995,15(2):230-235
本文系统地研究了祁雨沟爆破角砾岩型金矿床的地质特征、流体包裹体和硫、铅、氢、氧及碳同位素特征,认为成矿流体和成矿元素主要来自晚期的岩浆熔体,只在成矿晚期有少量大气降水的加入,应属典型的岩浆热液型金矿床。而矿床的形成和定位则是岩浆结晶分异作用的后期,岩浆熔体因水过饱和而发生“二次沸滕”,产生高压流体,从而在地表浅部发生隐爆作用,造成岩体坍塌,含金流体胶结而成含金角砾岩体。岩浆熔体脉动式的“二次沸滕”  相似文献   

16.
Hydrothermal fluid evolution north of the St Austell granite,southwest England, has been studied through geochemical analysisof tourmaline from a fault breccia of <2 cm width withinmassive quartz–tourmaline rocks at Roche. Brecciated tourmalinegrains have overgrowths of <400 µm width [Fe/(Fe +Mg) = 0·31–0·99] with four chemically distinctzones (1–4, towards the margins). Variations in overgrowthcomposition were caused by episodic mixing between Mg-, Al-richmagmatic hydrothermal fluids (dominant in zone 1), with an increasingcomponent of more oxidizing, Fe-rich formation waters (zones2 and 4). More oxidizing conditions are supported by high Sncontents in zone 2 (<0·35 wt %), with Sn probablypresent as Sn4+ rather than Sn2+, the usual form in hydrothermalfluids. From X-ray maps, zones 1 and 3 occur exclusively asovergrowths on pre-existing grains, indicating that overgrowthformation was kinetically favoured over tourmaline nucleation.In zones 2 and 4, nucleation and growth occurred, possibly asa result of supersaturation with respect to tourmaline duringincreased mixing with formation waters. Tourmaline is associatedwith the main episode of mineralization in many important mineraldeposits, often unaffected by alteration. This method of studyinghydrothermal fluid evolution may therefore have uses in exploration,particularly for tourmaline-breccia-hosted ores in Cu-porphyrydeposits. KEY WORDS: breccia; Cornwall; hydrothermal; tin; tourmaline  相似文献   

17.
Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl–oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17–57 %) and Mg/(Mg + Fe) ratios (0.19–0.50 in two-mica granitic rocks, and 0.05–0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (?78.2 ± 4.7 ‰) and δ11B (?10.7 to ?9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31–0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = ?29.5 ‰, and δ11B = ?9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26–0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1–13.3 ‰), though wider-ranging δD (?58.5 to ?36.5 ‰) and δ11B (?10.2 to ?8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35–0.78] and oxydravite [Mg/(Mg + Fe) = 0.51–0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in granitic melts, implying loss of B and other volatiles to the surrounding host-rocks during the late-magmatic stages. This process was responsible for tourmalinization at the exocontact of the Penamacor-Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the pluton margin (vein/breccia tourmalinites), or as replacement of mafic minerals (chlorite or biotite) in the host-rocks (replacement tourmalinites) along the exocontact of the granite. Thermometry based on 18O equilibrium fractionation between tourmaline and fluid indicates that a late, B-enriched magmatic aqueous fluid (av. δ18O ~12.1 ‰, at ~600 °C) precipitated the vein/breccia tourmaline (δ18O ~12.4 ‰) at ~500–550 °C, and later interacted with the cooler surrounding host-rocks to produce tourmaline at lower temperatures (400–450 °C), and an average δ18O ~13.2 ‰, closer to the values for the host-rock. Although B-metasomatism associated with some granitic plutons in the Iberian Peninsula seems to be relatively confined in space, extending integrated studies such as this to a larger number of granitic plutons may afford us a better understanding of Variscan magmatism and related mineralizations.  相似文献   

18.
A previously reported porphyry Cu + Mo deposit in an Eocene pluton within the South Shetland Island magmatic arc has been re-interpreted as three distinct hydrothermal assemblages. The oldest assemblage (1) exsolved under confinement from the deep (~6 km?) cooling magma whereas assemblages (2) and (3) formed during tectonic ± magmatic episodes at depths of < 1.5 km in the late Cenozoic. The three assemblages occur over the 5 × 11 km mapped in Barnard Point tonalite pluton. Assemblage (1) comprises shallowly dipping sheets of aplite, biotite + tourmaline pegmatite, massive ‘grey’ quartz, and quartz + tourmaline + bornite + chalcopyrite + molybdenite veins. Magnetite + tourmaline + chalcopyrite breccias have associated biotite, K-feldspar and muscovite alteration. Fluid inclusions indicate formation from hot (~600°C), saline (40 equivalent weight % NaCl + CaCl2) aqueous-carbonic fluids that exsolved from the partly consolidated magma. The primary control on solution chemistry and nature of fracturing was the depth of pluton emplacement. Assemblage (2) consists of steep, vuggy veins and country-rock breccias, with thick propylitic alteration selvages, cemented by microcrystalline quartz, complex inter-growths of FeMg carbonate, bladed barite and trace amounts of bornite and chalcopyrite. These rocks, previously described as breccia (sensu ‘pebble’) dykes in the porphyry complex, are reinterpreted as an influx of moderately hot (175–330°C), weak to moderately saline (2–21 EWP NaCl), aqueous-carbonic fluids that underwent isobaric boiling at 0.8 to 1.3 km depth. Assemblage (3) consists of thin, hematitic fault infillings formed during a second episode of brittle faulting.  相似文献   

19.
Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1. The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet. Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na. The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.  相似文献   

20.
The Nkamouna property is an oxide laterite deposit developed on serpentinized peridotite in southeast Cameroon. It is enriched in Co and Mn, has sub-economic Ni grades and will be mined primarily for Co. The ore zone is ca. 10 m thick and comprises the lower breccia (~3 m thick) and ferralite (7–8 m thick) units sandwiched between an 8-m-thick ferricrete overburden and a barren hydrated Mg–silicate saprolite. The ore mineral assemblage includes Mn oxyhydroxides, magnetite, maghemite, ferritchromite, goethite, hematite, kaolinite and gibbsite. Lithiophorite is the most common Mn mineral and is the main host of Co, Mn and a significant proportion of Ni. It occurs as coatings in pores and on other mineral grains and as concretions and impregnations in the matrix. It is invariably associated with gibbsite in the lower breccia and with magnetite and ferritchromite in the ferralite. Although ore in the lower breccia is volumetrically less important than the ferralite, it has the highest grade and Co/Ni ratio. The lithiophorite in the ore zone is authigenic, and its formation was enhanced by influx of Al3+ from the overlying ferricrete. Magnetite and ferritchromite in the ferralite are relicts and contributed to mineralization by enhancing the permeability of the ferralite and providing substrates for the precipitation of the Mn oxyhydroxides. The structure and mode of occurrence of the lithiophorite makes Nkamouna ore amenable to physical beneficiation, producing a concentrate with Co grades 2.3–4.5 times higher than the run-of-mine ore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号