首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高精度GRACE卫星时变重力场反演一直是卫星重力测量中的难题.为了恢复高精度的时变地球重力场模型,本文联合GRACE卫星的星载GPS和KBR星间测速观测数据,在对GRACE卫星进行精密定轨的同时,解算出60阶月平均地球重力场模型.通过对GRACE卫星的定轨精度、星载GPS相位和KBR星间测速数据的拟合残差以及时变地球重力场模型解算精度等分析,表明:(1)与美国宇航局喷气推进实验室(JPL)发布的约化动力学精密轨道相比,本文确定GRACE卫星轨道三维位置误差小于5 cm.(2)星载GPS相位数据拟合残差为5~8 mm,KBR星间测速数据拟合残差为0.18~0.30μm·s~(-1).(3)解算的月平均重力场模型与美国德克萨斯大学空间研究中心(CSR)、德国地学研究中心(GFZ)和JPL发布的RL05模型精度接近,时变信号在全球范围内具有很好的空间分布一致性.通过计算亚马逊流域和长江流域的水储量变化,本文与上述三个机构的计算结果无明显差异,且相关系数均达0.9以上.可见,本文建立的卫星轨道与重力场同解算法具有反演高精度GRACE时变重力场能力,为我国卫星重力场反演提供了重要的技术支持.  相似文献   

2.
利用动力学方法解算GRACE时变重力场研究   总被引:6,自引:4,他引:2       下载免费PDF全文
本文利用动力学方法建立GRACE(Gravity Recovery And Climate Experiment)K波段距离变率(KBRR)观测、轨道观测与重力场系数的观测方程,通过GRACE Level 1B观测数据,成功解算出全球月时变重力场模型——IGG时变重力场模型,并将2008—2009年的解算结果与GRACE三大数据处理机构美国德克萨斯大学空间中心CSR(Center for Space Research)、美国宇航局喷气推进实验室JPL(Jet Propulsion Laboratory)和德国地学研究中心GFZ(GeoForschungs Zentrum)发布的最新全球时变重力场模型进行详细对比分析.结果表明:IGG结果在全球质量异常、中国及周边地区质量异常的趋势变化、全球质量异常均方差、2~60每阶位系数差值以及亚马逊流域和撒哈拉沙漠等典型区域平均质量异常等方面与CSR、JPL和GFZ解算的RL05结果较为一致.其中,IGG解算结果在2~20阶与CSR、GFZ和JPL最新解算结果基本一致,20~40阶IGG解算结果与GFZ、JPL单位最新解算结果较为接近,大于40阶IGG结果介于CSR与GFZ、JPL之间;亚马逊流域平均质量异常周年振幅IGG、CSR、GFZ和JPL获取到的结果分别为17.6±1.1cm、18.9±1.2cm、17.8±0.9cm和18.9±1.0cm等效水柱高.利用撒哈拉沙漠地区的平均质量异常做反演精度评定,IGG、CSR、GFZ和JPL的时变重力场获取到的平均质量异常均方差分别为1.1cm、0.9cm、0.8cm和1.2cm,表明IGG解算结果与CSR、GFZ和JPL最新发布的RL05结果在同一精度水平.  相似文献   

3.
利用运动学轨道提高GRACE时变重力场解算   总被引:1,自引:1,他引:0       下载免费PDF全文
基于变分方程法,本文利用GARCE高精度K波段星间测速数据KBRR,结合德国格拉茨大学发布的运动学轨道和GFZ发布的简动力学轨道作为两种伪观测值,分别解算了2005-2010年60阶全球时变重力场模型Hust-IGG01与Hust-IGG02.通过与GRACE官方机构发布的模型和其他国际主流权威模型进行对比,发现基于运动学轨道结合KBRR解算的模型Hust-IGGO1优于基于简动力学轨道结合KBRR解算的模型Hust-IGG02:在重力场系数C_(20)时间序列的统计数据上,Hust-IGG01比Hust-IGG02更接近SLR结果,在如C_(60)、C_(70)、C_(80)以及C_(90)等重力场低阶项上的数学统计均更接近CSR RL05;Hust-IGG01的重力场系数误差分布和GFZ RL05在同一水平,而Hust-IGG02的误差估计过于乐观;Hust-IGG02在主要质量变化区域上存在5%~10%信号低估,而Hust-IGG01能完全达到国际主流机构利用GPS观测数据的解算水平,Hust-IGG01与官方机构CSR、JPL和GFZ最新模型在格陵兰岛的冰川消融年际趋势分别是-125.4、-125.4、-127.3、-124.3 Gt·a~(-1),在亚马逊流域的平均等效水高周年振幅分别是17.56、17.40、17.46、17.22 cm,在撒哈拉沙漠的平均等效水高均方差分别是0.87、0.77、1.10、0.87 cm;另外在Hust-IGG01的实际应用上,本文分析了全球32个主要流域质量变化的年际趋势、周年振幅和半周年振幅三种信号模式,统计结果显示Hust-IGG01与CSR RL05结果基本吻合.  相似文献   

4.
魏娜  施闯  刘经南 《地球物理学报》2015,58(9):3080-3088
GPS技术能以高空间和高时间分辨率监测地表形变.但由于测量原理的不同,GPS监测的地表形变与GRACE存在差异.本文比较了ITRF2008-GPS残差序列与基于CSR的RL05版本的GRACE球谐系数的地表形变序列的差异.结果表明,GPS和GRACE的周年变化在高程方向上具有较好的一致性,但水平方向的差异明显.重点分析了影响GPS/GRACE地表形变差异(尤其是水平方向)的三个因素:不同GPS站时间序列间的不确定性,热弹性形变和区域形变.GPS站地表形变本身的不确定度在一定程度上导致了GPS/GRACE间的差异(特别是水平方向).结合热弹性形变理论指出,由温度变化引起的热弹性形变也是导致GPS/GRACE的南北方向差异的主要原因之一.因此利用GPS数据研究地表质量负载时,必须消除热弹性形变的影响.区域负载对GPS/GRACE水平方向差异的影响也是不可忽略的,特别是对欧洲区域.  相似文献   

5.
The Gravity Recovery and Climate Experiment (GRACE) satellite data is used to estimate the rate of ice mass variability over Greenland. To do this, monthly GRACE level 2 Release-04 (RL04) data from three different processing centers, Center for Space Research (CSR), German Research Center for Geosciences (GFZ) and Jet Propulsion Laboratories (JPL) were used during the period April 2002 to February 2010. It should be noted that some months are missing for all three data sets. Results of computations provide a mass decrease of −163 ± 20 Gigaton per year (Gt/yr) based on CSR-RL04 data, −161 ± 21 Gt/yr based on GFZ-RL04 data and −84 ± 26 Gt/yr based on JPL RL04.1. The results are derived by the application of a non-isotropic filter whose degree of smoothing corresponds to a Gaussian filter with a radius of 340 km. Striping effects in the GRACE data, C20 effect, and leakage effects are taken into the consideration in the computations. There is some significant spread of the results among different processing centers of GRACE solutions; however, estimates achieved in this study are in agreement with the results obtained from alternative GRACE solutions.  相似文献   

6.
利用径向基函数RBF解算GRACE全球时变重力场   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用GRACE(Gravity Recovery And Climate Experiment)level 1b数据和径向基函数RBF(radial basis function)方法解算了全球时变地球重力场.RBF基函数相比传统球谐(spherical harmonic)基函数,其高度的空域局部特性使得正则化过程易于添加先验协方差信息,从而可能揭示更加准确的重力场信号.本文研究表明,RBF基函数算法在精化现有的GRACE全球时变重力场模型,如提升部分区域信号幅度等方面具有一定优势.本文通过将RBF的尺度因子作为待解参数,基于GRACE卫星的Level 1b数据和变分方程法,成功获取了2009-2010年90阶无约束全球时变重力场RBF模型Hust-IGG03,以及正则化全球时变重力场RBF模型Hust-IGG04.通过与GRACE官方数据处理中心GFZ发布的最新90阶球谐基时变模型RL05a进行对比,结果表明:(1)无约束RBF模型Hust-IGG03和GFZ RL05a在空域和频域表现基本一致;(2)正则化RBF模型Hust-IGG04无需进行后处理滤波已经显示较高信噪比,噪音水平接近于球谐基模型GFZ RL05a经400 km高斯滤波后的效果;(3)HustIGG04相比400 km高斯滤波GFZ RL05a在周年振幅图和趋势图上显示出更多的细节信息,并且呈现出更强的信号幅度,如在格陵兰冰川融化趋势估计上Hust-IGG04比GFZ RL05a提高了24.2%.以上结果均显示RBF方法有助于进一步挖掘GRACE观测值所包含的时变重力场信息.  相似文献   

7.
Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission   总被引:1,自引:0,他引:1  
We use GRACE gravity data released by the Center for Space Research (CSR) and the Groupe de Recherches en Geodesie Spatiale (GRGS) to detect the water storage changes over the Tibetan Plateau (TP). A combined filter strategy is put forward to process CSR RL05 data to remove the effect of striping errors. After the correction for GRACE by GLDAS and ICE-5G, we find that TP has been overall experiencing the water storage increase during 2003–2012. During the same time, the glacier over the Himalayas was sharply retreating. Interms of linear trends, CSR’s results derived by the combined filter are close to GRGS RL03 with the Gaussian filter of 300-km window. The water storage increasing rates determined from CSR’s RL05 products in the interior TP, Karakoram Mountain, Qaidam Basin, Hengduan Mountain, and middle Himalayas are 9.7, 6.2, 9.1,–18.6, and–20.2 mm/yr, respectively. These rates from GRGS’s RL03 products are 8.6, 5.8, 10.5,–19.3 and–21.4 mm/yr, respectively.  相似文献   

8.
本文基于短弧长法开发了一套由低轨卫星数据解算重力场的系统ANGELS(ANalyst of Gravity Estimation with Low-orbit Satellites),成功用GRACE Level1B数据解算出全球时变重力场模型(第一版IGG-CAS系列模型),并与国际三大知名重力卫星相关研究机构:美国德克萨斯大学空间中心CSR (Center for Space Research)、德国GFZ地学研究中心(GeoForschungsZentrum)和美国宇航局JPL喷气推进实验室(Jet Propulsion Laboratory)发布的全球时变重力场模型(RL05模型)进行了详细的比较分析.通过每阶大地水准面差距的对比结果表明,IGG-CAS模型的精度接近RL05模型的精度.对以上四家机构在2004-2010年的时变重力场模型经过相同的去条带和高斯滤波处理,可以发现四家GRACE反演陆地水时变信号的空间分布十分接近,在长江流域反演的陆地水时变信号,两两之间的相关系数均大于0.8.通过反演撒哈拉沙漠干旱地区的时变信号来评估反演的精度水平,IGG-CAS、CSR-RL05、GFZ-RL05和JPL-RL05反演结果的均方差分别为1.5 cm、1.1 cm、1.1 cm和1.2 cm等效水柱高.综合表明IGG-CAS时变重力场反演模型的精度接近于目前国外主要机构最新公布的时变重力场模型.  相似文献   

9.
合理的随机模型是确定高精度卫星轨道的前提条件,目前广泛应用于地面观测数据的随机模型主要有高度角模型和载噪比模型,本文通过对GRACE卫星实测数据的分析表明上述随机模型均不能很好地描述GRACE卫星星载GPS观测值的噪声特点,为此,文中提出了扩展的高度角模型和扩展的载噪比随机模型.利用自主研发的精密定轨软件,分别采用高度角模型、扩展的高度角模型、载噪比模型、扩展的载噪比模型对GRACE卫星进行了轨道确定.数值结果表明:(1)高度角模型的运动学轨道径向精度为3.4 cm,扩展的高度角模型的为3.3 cm;(2)载噪比模型的运动学轨道径向精度为4.9 cm,扩展的载噪比模型的则为3.4 cm,精度提高了1.5 cm.经比较分析,文中提出的扩展的高度角模型和载噪比模型能更好地描述GRACE卫星观测值噪声特点,并能取得更高的卫星定轨精度.  相似文献   

10.
The reprocessing of Gravity field and steady-state Ocean Circulation Explorer (GOCE) Level 1b gradiometer and star tracker data applying upgraded processing methods leads to improved gravity gradient and attitude products. The impact of these enhanced products on GOCE-only and combined GOCE+GRACE (Gravity Recovery and Climate Experiment) gravity field models is analyzed in detail, based on a two-months data period of Nov. and Dec. 2009, and applying a rigorous gravity field solution of full normal equations. Gravity field models that are based only on GOCE gradiometer data benefit most, especially in the low to medium degree range of the harmonic spectrum, but also for specific groups of harmonic coefficients around order 16 and its integer multiples, related to the satellite’s revolution frequency. However, due to the fact that also (near-)sectorial coefficients are significantly improved up to high degrees (which is caused mainly by an enhanced second derivative in Y direction of the gravitational potential — VYY), also combined gravity field models, including either GOCE orbit information or GRACE data, show improvements of more than 10% compared to the use of original gravity gradient data. Finally, the resulting gradiometry-only, GOCE-only and GOCE+GRACE global gravity field models have been externally validated by independent GPS/levelling observations in selected regions. In conclusion, it can be expected that several applications will benefit from the better quality of data and resulting GOCE and combined gravity field models.  相似文献   

11.
A global gravity field model TUG-CHAMP04, derived from CHAMP (CHAllenging Minisatellite Payload) satellite-to-satellite GPS tracking observations in the high-low mode (SST-hl) in combination with CHAMP accelerometry, is presented and described in detail in this paper. For this purpose the energy integral approach was applied to precise kinematic orbits and accelerometer data. The advantage of these kinds of orbits is that they are derived from purely geometrical information, hence no external gravity field information is used for the determination of the positions. The disadvantage of precise kinematic orbit information is, that no velocities are delivered and hence a procedure has to be elaborated to deduce the velocities from kinematic positions. This work is done in preparation for ESA’s GOCE (Gravity field and steady state Ocean Circulation Explorer) satellite mission (scheduled launch November 2006), aiming at a high precision and high-resolution gravity field model on a global scale. This paper concentrates on the CHAMP data processing, where, in contrast to the usual standard method (processing in the Earth fixed frame), an approach in the inertial frame is chosen. Focus is taken on the data preprocessing of both accelerometer and orbit data, emphasising on the correct treatment of data-gaps and outlier detection. Furthermore an arc-wise weighting strategy is introduced and the advantages/disadvantages of this approach are discussed. Finally, the TUG-CHAMP04 model, calculated from one year of CHAMP data is compared with the official CHAMP gravity field model EIGEN-3p and terrestrial data (GPS levelling data).  相似文献   

12.
Only with satellites it is possible to cover the entire Earth densely with gravity field related measurements of uniform quality within a short period of time. However, due to the altitude of the satellite orbits, the signals of individual local masses are strongly damped. Based on the approach of Petrovskaya and Vershkov we determine the gravity gradient tensor directly from the spherical harmonic coefficients of the recent EIGEN-GL04C combined model of the GRACE satellite mission. Satellite gradiometry can be used as a complementary tool to gravity and geoid information in interpreting the general geophysical and geodynamical features of the Earth. Due to the high altitude of the satellite, the effects of the topography and the internal masses of the Earth are strongly damped. However, the gradiometer data, which are nothing else than the second order spatial derivatives of the gravity potential, efficiently counteract signal attenuation at the low and medium frequencies. In this article we review the procedure for estimating the gravity gradient components directly from spherical harmonics coefficients. Then we apply this method as a case study for the interpretation of possible geophysical or geodynamical patterns in Iran. We found strong correlations between the cross-components of the gravity gradient tensor and the components of the deflection of vertical, and we show that this result agrees with theory. Also, strong correlations of the gravity anomaly, geoid model and a digital elevation model were found with the diagonal elements of the gradient tensor.  相似文献   

13.
基于GRACEKBRR数据的动力积分法反演时变重力场模型   总被引:2,自引:0,他引:2       下载免费PDF全文
罗志才  周浩  李琼  钟波 《地球物理学报》2016,59(6):1994-2005
基于动力积分法恢复了一组60阶的时变重力场模型WHU-Grace01s,且在位系数解算过程中仅使用KBRR数据.通过与CSR、GFZ和JPL发布的Release 05模型的阶方差和位系数误差谱对比可知,WHU-Grace01s模型在高阶次部分的阶方差较小,且对轨道共振现象不敏感.将WHU-Grace01s时变重力场模型与CSR、GFZ、JPL、DEOS、Tongji、ITG、AIUB和GRGS等8家机构发布模型通过相同的滤波处理,获得了全球地表质量变化的时空分布,从结果可以看出:各个模型计算的时变信号在空域上分布十分接近,且WHU-Grace01s模型计算的太平洋中心和撒哈拉沙漠区域的质量变化较小;对比几个典型质量变化区域,WHU-Grace01s模型和JPL模型计算的长江流域和珠江流域时变信号呈强相关,其相关系数分别为0.948和0.976,且与上述8个模型计算的两个流域时变信号的相关系数均达到0.9以上;在南极区域和格陵兰岛,WHU-Grace01s模型和其他各个模型均能反映区域冰川质量的积累或消融,且各模型计算获得的长期趋势变化结果相当.研究结果表明,WHU-Grace01s模型和国内外已发布机构模型具有很好的一致性,且受到轨道共振影响较小.  相似文献   

14.
本文利用卫星重力反演与模拟软件ANGELS系统(ANalyst of Gravity Estimation with Low-orbit Satellites)对低低跟踪模式的重力卫星的关键载荷精度指标进行了深入分析.模拟结果表明:(1)对短弧长积分法而言,在低低跟踪模式的关键载荷精度指标中,重力场反演精度对星间距离变率精度最为敏感;(2)通过对目前在轨运行GRACE的载荷指标进行分析,发现轨道数据的误差主要影响重力场的低阶部分(约小于25阶),较高阶次部分(约大于26阶)主要受星间距离变率的误差限制;(3)如果下一代低低跟踪模式的重力卫星的目标之一是把重力异常反演精度较GRACE提高约10倍,则在保持轨道高度和GRACE相同的前提下,轨道、星间距离变率和星载加速度计等关键载荷指标需要达到的最低精度分别约为2cm、10nm·s-1和3.0×10-10 m·s-2;(4)轨道精度和混频误差将是影响下一代低低跟踪模式重力卫星重力场恢复能力进一步提高的主要制约因素,距离变率精度和加速度计精度存在盈余.  相似文献   

15.
Most GPS coordinate time series, surface displacements derived from the Gravity Recovery and Climate Experiment (GRACE), and loading models display significant annual signals at many regions. This paper compares the annual signals of the GPS position time series from the Crustal Dynamics Data Information System (CDDIS), estimates of loading from GRACE monthly gravity field models calculated by three processing centers (Center of Spatial Research, CSR; Jet Propulsion Laboratory, JPL; GeoForschungsZentrum, GFZ) and three geophysical fluids models (National Center for Environmental Prediction, NCEP; Estimating the Circulation and Climate of the Ocean, ECCO; Global Land Data Assimilation System, GLDAS) for 270 globally distributed stations for the period 2003-2011. The results show that annual variations derived from the level-2 products from the three GRACE product centers are very similar. The absolute difference in annual amplitude between any two centers is never larger than 1.25 mm in the vertical and 0.11 mm in horizontal displacement. The mean phase differences of the GRACE results are less than ten days for all three components. When we correct the GPS vertical coordinate time series using the GRACE annual amplitudes using the products from three GRACE analysis centers, we find that we are able to reduce the GPS annual signal in the vertical at about 80% stations and the average reduction is about 47%. In the north and the east, the annual amplitude is reduced on 77% and 72% of the stations with the average reduction 32% and 33%. We also compare the annual surface displacement signal derived from two environmental models; the two models use the same atmospheric and non-tidal ocean loading and differ only in the continental water storage model that we use, either NCEP or GLDAS. We find that the model containing the GLDAS continental water storage is able to better reduce the annual signal in the GPS coordinate time series.  相似文献   

16.
Satellite missions CHAMP and GRACE dedicated to global mapping of the Earth’s gravity field yield accurate satellite-to-satellite tracking (SST) data used for recovery of global geopotential models usually in a form of a finite set of Stokes’s coefficients. The US-German Gravity Recovery And Climate Experiment (GRACE) yields SST data in both the high-low and low-low mode. Observed satellite positions and changes in the intersatellite range can be inverted through the Newtonian equation of motion into values of the unknown geopotential. The geopotential is usually approximated in observation equations by a truncated harmonic series with unknown coefficients. An alternative approach based on integral inversion of the SST data of type GRACE into discrete values of the geopotential at a geocentric sphere is discussed in this article. In this approach, observation equations have a form of Green’s surface integrals with scalar-valued integral kernels. Despite their higher complexity, the kernel functions exhibit features typical for other integral kernels used in geodesy for inversion of gravity field data. The two approaches are discussed and compared based on their relative advantages and intended applications. The combination of heterogeneous gravity data through integral equations is also outlined in the article. panovak@kma.zcu.cz  相似文献   

17.
A gravity field model is computed from the four accurate gravitational gradient components of GOCE (Gravity field and steady-state Ocean Circulation Explorer), combined with the analysis of the kinematic orbits, and some moderate constraint (or stabilization) in the polar areas where no observation from GOCE is available due to the orbit geometry. The normal matrix of each component is computed individually in order to study its contribution to the combined solution. The results show that the contribution of Vzz is the largest, with an average value of 32.74% of the total solution; the second and the third largest are Vzz and Vyy, with average values of 28.04% and 26.08%, respectively; the component Vxz contributes 11.81%. Validation with external data shows that each component has its characteristic value and that the information content of the component Vxz is not negligible and should be included for gravity field recovery. The orbit part as derived from high-low satellite-to-satellite tracking (SST-hl) to the GPS contributes mostly to the coefficients below degree and order (d/o) 20, and to non-zonal coefficients from d/o 20 to 80. The mean value of the contribution of the polar stabilization is the smallest with a value of 0.22%, nevertheless it is important. In addition to the contribution analysis in terms of the normal matrices, each individual component of the gradiometer has been combined with SST and polar stabilization, to give a set of single component gravity field models. These partially combined solutions are compared to the fully combined solution in terms of geoid differences. They show that the partially combined solution with Vzz is closest to the complete solution. Even closer is a combination with Vxx and Vyy. In addition to the GOCE-only solution, a GOCE-GRACE (Gravity Recovery And Climate Experiment) combined gravity field model is derived and the information content of GOCE and an available set of normal equations of GRACE are investigated. Results show that, as expected, GRACE dominates the solution below degree 90 and GOCE above degree 140.  相似文献   

18.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   

19.
本文利用CSR发布的GRACE RL06时变重力场模型,结合两种水文模式、卫星测高、降雨和蒸散等多源数据,从多个角度综合系统地分析维多利亚湖流域2003-01-2017-06的陆地水储量变化.比较了正向建模方法和单一尺度因子对泄漏误差的改正效果,经对比采用正向建模方法在此流域效果更好.基于多源数据得出以下三点与此前研究...  相似文献   

20.
海潮误差是GRACE时变重力场反演中重要的误差源,目前发布的海潮模型中主要包含振幅较大的主潮波分量模型,在时变重力场反演中次潮波的影响也是不可忽略的,因此,GRACE时变重力场反演中的海潮误差主要包括受限于海潮模型误差和次潮波影响.本文利用轨道模拟方法检测了短周期潮波的混频周期以及次潮波对ΔC20,ΔC30的时序特征,并进一步通过轨道模拟结果分析了海潮误差对时变重力场反演的影响,然后通过实测数据解算分析了海潮误差对当前GRACE时变重力场解算的影响,研究发现:(1)利用轨道模拟能够有效地检测短周期潮波的混频周期;(2)时变重力场解算过程中,次潮波的影响大于海潮模型误差的影响;(3)海潮模型误差以及次潮波影响是当前GRACE没有达到基准精度的重要因素之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号