首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The provenance of low-calcic black shales   总被引:2,自引:0,他引:2  
The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta (Wood et al. 1979). The black shales plot in a cluster in a high Th region outside the various basalt fields, which suggests contribution from the continental crust.  相似文献   

2.
Shales of the ∼2.7 Ga Zeederbergs Formation, Belingwe greenstone belt, Zimbabwe, form thin (0.2-2 m) horizons intercalated with submarine lava plain basalts. Shales of the overlying Cheshire Formation, a foreland basin sedimentary sequence, form 1-100 m thick units intercalated with shallow-water carbonates and deep-water, resedimented basalt pebble conglomerates. Zeederbergs shale is characterized by high contents of MgO and transition metals and low concentrations of K2O and LILE as compared to average Phanerozoic shale, indicative of an ultramafic to mafic source terrain. Cheshire shales have similar major and trace element contents, but MgO and transition metals are less enriched and the LILE are less depleted. Zeederbergs shales have smoothly fractionated REE patterns (LaN/YbN = 2.84-4.45) and no significant Eu anomaly (Eu/Eu* = 0.93-0.96). REE patterns are identical to those of the surrounding basaltic rocks, indicating local derivation from submarine reworking. Cheshire shales have rather flat REE patterns (LaN/YbN = 0.69-2.19) and a small, negative Eu anomaly (average Eu/Eu* = 0.85), indicative of a mafic provenance with minor contributions of felsic detritus. A systematic change in REE patterns and concentrations of transition metals and HFSE upwards in the sedimentary succession indicates erosion of progressively more LREE-depleted basalts and ultramafic volcanic rocks, followed by unroofing of granitoid crust. Weathering indices confirm the submarine nature of Zeederbergs shale, whereas Cheshire shale was derived from a source terrain subjected to intense chemical weathering.  相似文献   

3.
Greywackes (Dharwar greywackes) are the most abundant rock types in the northern part of the Dharwar-Shimoga greenstone belt of the western Dharwar craton. They are distinctly immature rocks with poorly-sorted angular to sub-angular grains, comprising largely quartz, plagioclase feldspar and lithic fragments of volcanics (mafic+felsic), chert and quartzite, with subordinate biotite, K-feldspar and muscovite. They are characterized by almost uniform silica (59.78-67.96 wt%; av. 62.58), alkali (4.62-7.35 wt%; av. 5.41) contents, SiO2/Al2O3 (3.71-5.25) ratios, and compositionally are comparable to the andesite and dacite. As compared to Ranibennur greywackes, located about 100 km south of Dharwad in the Dharwar-Shimoga greenstone belt, the Dharwar greywackes have higher K2O, CaO, Zr, Y, ΣREE, Th/Sc, Zr/Cr, La/Sc and lower Sr, Cr, Ni, Sc, Cr/Th values. The chondrite normalized patterns of Dharwar greywackes are characterized by moderately fractionated REE patterns with moderate to high LREE enrichment, with almost flat HREE patterns and small negative Eu anomalies, suggesting felsic dominated source rocks in the provenance. The frame work grains comprising felsic and mafic volcanics, feldspars and quartz suggest a mixed source in the provenance. The moderate CIA values ranging between 57 and 73, indicate derivation of detritus from fresh basement rocks and from nearby volcanic sources.The mixing calculations suggest that the average REE pattern is closely matching with a provenance having 40% dacite, 30% granite, 20% basalt and 10% tonalite. These greywackes were deposited in a subduction related forearc basin than a continental margin basin. Their La/Sc ratios are high (av. 4.07) compared to the Ranibennur greywackes (1.79), suggesting that the greywackes of the northern part of the basin received detritus from a more evolved continental crust than the greywackes of the central part of the Dharwar-Shimoga basin.  相似文献   

4.
With a few exceptions, shales from the Archean Witwatersrand Supergroup (~2800 Ma) in South Africa are depleted in Na, Ca, LILE, REE and HFSE compared to Phanerozoic shales. Cr, Co and Ni are enriched in all Witwatersrand shales and Fe and Mg are high in shales from the West Rand Groups (WRG) and lower Central Rand Group (CRG). Shales from the CRG and uppermost WRG are enriched in Na, Al, LILE, REE, HFSE and transition metals relative to shales from the lower WRG. Chondrite-normalized REE patterns for all Witwatersrand shales are enriched in light-REE and exhibit small to moderate negative Eu anomalies. A positive correlation of REE and Al2O3 contents in the shales suggests that REE are contained principally in clay minerals.Relative to shales from the CRG, shales from the WRG exhibit depletions of Na, Ca and Sr, a feature probably reflecting intense chemical weathering of their source rocks. CIA indices in Witwatersrand shales are variable (chiefly 70–98), even within the same shale unit. Such variations reflect chiefly variable climatic zones or rates of tectonic uplift in source areas with perhaps some contribution from provenance and element remobilization during metamorphism.Compared to present-day upper continental crust, all but the Orange Grove, Roodepoort, and K8 shales appear to have been derived from continental sources depleted in LILE, REE, and HFSE and enriched in transition metals. Computer mixing models based on six relatively immobile elements (Th, Hf, Yb, La, Sc, Co) and four source rocks indicate that the relative proportions of granite, basalt and komatiite increased with time in sediment source areas at the expense of tonalite. The contributions of basalt and komatiite appear to reach a maximum during deposition of the Booysens shale, and granite during deposition of the K8 shales and possibly during deposition of the Orange Grove shales.  相似文献   

5.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

6.
The mineralogical and geochemical characteristics of the Upper Triassic Baluti shale from the Northern Thrust Zone (Sararu section) and High Folded Zone (Sarki section) Kurdistan Region, Iraq, have been investigated to constrain their paleoweathering, provenance, tectonic setting, and depositional redox conditions. The clay mineral assemblages are dominated by kaolinite, illite, mixed layers illite/smectite at Sararu section, and illite > smectite with traces of kaolinite at Sarki. Illite, to be noted, is within the zone of diagenesis. The non-clay minerals are dominated by calcite with minor amounts of quartz and muscovite in Sararu shale; and are dominated by dolomite with amounts of calcite and quartz in Sarki shale. Baluti shale is classified as Al-rich based on major and minor elements. The chemical index of alteration (CIA) is significantly higher in the Sararu than the Sarki shales, suggesting more intense weathering of the Sararu than the Sarki shales. The index of compositional variability (ICV) of the Sararu shale is less than 1 (suggesting it is compositionally mature and was deposited in a tectonically quiescent setting). More than 1 for Sarki shales (suggest it is less mature and deposited in a tectonically active setting). Most shale of the Baluti plot parallel and along the A-K line in A-CN-K plots suggest intense chemical weathering (high CIA) without any clear-cut evidence of K-metasomatism. Clay mineral data, Al enrichment, CIA values, and A-CN-K plot suggest that the source area experienced high degree of chemical weathering under warm and humid conditions, especially in Sararu. Elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/Eu*CN) shows slight difference between the Sararu and Sarki shales; and the ratios are similar to fine fractions derived from the weathering of mostly felsic rocks. The Eu/Eu* CN, Th/Sc, and low K2O/Al2O3 ratios of most shales suggest weathering from mostly a granodiorite source rather than a granite source, consistent with a source from old upper continental crust. Discrimination diagrams based on major and trace element content point to a role of the felsic-intermediate sources for the deposition of Baluti Formation, and probably mixed with mafic source rocks at Sararu section. The chondrite-normalized rare earth elements (REE) patterns are similar to those of PAAS, with light REE enrichment, a negative Eu anomaly, and almost flat heavy REE pattern similar to those of a source rock with felsic components. The source of sediments for the Baluti Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin; whereas the Sararu shale was affected by the mafic rocks of the Bitlis-Avroman-Bisitoun Ridge to the northeast of Arabian Plate. The tectonic discrimination diagrams, as well as critical trace and REE characteristic parameters imply rift and active setting for the depositional basin of the shale of Baluti Formation. The geochemical parameters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate that these shales were deposited under oxic environment and also show that Sarki shale was deposited under more oxic environment than Sararu.  相似文献   

7.
赵祖斌  高山 《地学前缘》2000,7(2):431-439
分析了华北克拉通新太古代—三叠纪 16个碎屑沉积岩组合样品。与Taylor和McLennan等提出的太古宙—元古宙界线前后沉积岩及上地壳化学组成变化不同 ,新太古代五台群沉积岩具明显负Eu异常 ,相容元素含量很低 ,不相容元素含量较高 ,与典型后太古宙沉积物组成类似。而古元古代沉积岩比五台群显示出异常高的Eu/Eu 值 ,w(Sc) /w(Th) ,w(Cr) /w (Th)比值。青白口纪、寒武纪、石炭纪和二叠纪沉积岩显示正常的后太古宙沉积岩特征。三叠纪沉积岩的Eu/Eu 值 ,w (Sc) /w (Th) ,w(Cr) /w(Th)比值再次显著升高 ,推测与华北和扬子克拉通最终的陆陆碰撞作用有关。因此 ,太古宙—元古宙界线并不一致对应于上地壳演化程度迅速增高。大陆上地壳并非总是向着分异程度提高的方向演化 ,而是部分时期可出现演化程度降低的异常现象。  相似文献   

8.
Provenance studies on Early to Middle Ordovician clastic formations of the southern Puna basin in north-western Argentina indicate that the sedimentary detritus is generally composed of reworked crustal material. Tremadoc quartz-rich turbidites (Tolar Chico Formation, mean composition Qt89 F7 L4) are followed by volcaniclastic rocks and greywackes (Tolillar Formation, mean Qt33 F42 L25). These are in turn overlain by volcaniclastic deposits (mean Qt24 F30 L46) of the Diablo Formation (late Arenig–early Llanvirn) that are intercalated by lava flows. All units were deformed in the Oclóyic Orogeny during the Middle and Late Ordovician. Sandstones of the Tolar Chico Formation are characterized by Th/Sc ratios > 1, La/Sc ratios ≈ 10, whereas associated fine-grained wackes show slightly lower values for both ratios. LREE (light rare earth elements) enrichment of the arenites is ≈ 50× chondrite, Eu/Eu* values are between 0·72 and 0·92, and flat HREE (heavy rare earth elements) patterns indicate a derivation from mostly felsic rocks of typical upper crustal composition. The εNd(t = sed) values scatter around −11 to −9. The calculated Nd-TDM residence ages vary between 1·8 and 2·0 Ga indicating contribution by a Palaeoproterozoic crustal component. The Th/Sc and La/Sc ratios of the Tolillar Formation are lower than those of the Tolar Chico Formation. Normalized REE (rare earth elements) patterns display a similar shape to PAAS (post-Archaean average Australian shale) but with higher abundances of HREEs. Eu/Eu* values range between 0·44 and 1·17, where the higher values reflect the abundance of plagioclase and feldspar-bearing volcanic lithoclasts. Average εNd(t = sed) values are less negative at −5·1, and Nd-TDM are lower at 1·6 Ga. This is consistent with characteristics of regional rocks of upper continental crust composition, which most probably represent the sources of the studied detritus. The rocks of the Diablo Formation have the lowest Th/Sc and La/Sc ratios, lower LREE abundances than the average continental crust and are slightly enriched in HREEs. Eu/Eu* values are between 0·63 and 1·17. The Nd isotopes (εNd(t = sed) = −3 to −1; TDM = 1·2 Ga) indicate that one source component was less fractionated than both the underlying Early Ordovician and the overlying Middle Ordovician units. Synsedimentary vulcanites in the Diablo Formation show the same isotopic composition. Our data indicate that the sedimentary detritus is generally composed of reworked crustal material, but that the Diablo Formation appears to contain ≈ 80% of a less fractionated component, derived from a contemporaneous continental volcanic arc. There are no data indicating an exotic detrital source or the accretion of an exotic block at this part of the Gondwana margin during the Ordovician.  相似文献   

9.
Geochemical compositions of the Lower Cambrian Niutitang Formation shales in the southeastern Yangtze Platform margin were investigated for provenance, tectonic setting, and depositional environment. The shale samples are characterized by higher abundances of large ion lithophile elements (Cs, Ba, and Pb), lower abundances of high field strength elements (Cr, Sc, and Co) and transition elements (Th, Zr, Hf, Nb, and Ta) relative to average shale. North American shale composition (NASC) -normalized rare earth element (REE) patterns are observed, with negative Ce anomalies, negative Eu anomalies, and positive Y anomalies. The chemical index of alteration (CIA) varies from 68.67–74.93. Alkali and alkaline element contents and CIA values suggest that the source rocks have undergone moderate weathering. The index of compositional variability (ICV), Zr/Sc and Th/Sc ratios vary from 0.53 to 1.07, 5.31 to 8.18 and 0.52–1.02, respectively. ICV values and relationships between Zr/Sc and Th/Sc ratios indicate negligible sedimentary recycling. The Al2O3/TiO2 (14–26) and TiO2/Zr (56–77) ratios imply that the source rocks of the investigated shales had intermediate igneous compositions. However, Cr/V ratios and a La/Th–Hf discrimination diagram suggest that the intermediate compositional signal of the source rocks was derived from a mixture of 75% mafic and 25% felsic igneous rocks rather than intermediate igneous rocks. The major source was the Jiangnan continental island arc with bimodal igneous rocks, lying to the south of the study area, together with a contribution from granites and gneisses uplifted and eroded in the Yangtze Block. Discrimination of tectonic setting using major and trace elements indicates that the source rocks originated in a transitional setting from active continental to passive margin, consistent with the failed intracontinental rift model for the evolution of the South China plate. The Niutitang Formation shales were deposited in a rift basin setting under conditions of anoxic bottom water in a redox-stratified water column, with organic-rich shales prospective for shale-gas production being found in deep-water downslope and basin environments rather than the shallow-water shelf.  相似文献   

10.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

11.
The Hangay–Hentey belt is situated in the central Northern Mongolia, and forms part of the Central Asian Orogenic Belt (CAOB). It is internally subdivided into seven terranes, the largest of which are the neighbouring Ulaanbaatar and Tsetserleg terranes. These coeval terranes are mainly composed of Silurian–Devonian accretionary complexes and Carboniferous turbidites. Proposals for their depositional setting range from passive margin through to island arc. A suite of 19 Ulaanbaatar terrane sandstones and mudrocks (Gorkhi and Altanovoo Formations) were collected with the aim of constraining their provenance, source weathering, and depositional setting based on whole-rock major and trace element data, and for comparison with the neighbouring Tsetserleg terrane. New REE analyses were also made of 35 samples from the Ulaanbaatar and Tsetserleg terranes. Geochemically the Ulaanbaatar sandstones are classed as wackes, and most of the mudstones as shales. Geochemical parameters suggest an immature source, similar to that of the Tsetserleg terrane. Geochemical contrasts between sandstones and mudrocks in the Ulaanbaatar sediments are small, and trends on element – Al2O3 variation diagrams are weak. Comparison with average upper continental crust (UCC), major element discriminant scores, and immobile element ratios (Th/Sc, Zr/Sc, Ce/Sc, Ti/Zr) indicate a uniform average source composition between dacite and rhyolite. Maximum Chemical Index of Alteration value in the Ulaanbaatar terrane is ∼65 after correction for K-metasomatism, indicating minimal weathering in a tectonically active source, similar to that of the Tsetserleg terrane. REE data in both terranes show moderate LREE enrichment and flat HREE segments, with negative Eu anomalies somewhat less than those in UCC and PAAS. Chondrite-normalized patterns are very similar to that for average Paleozoic felsic volcanic rock, supporting the relatively felsic source indicated by immobile trace element ratios. Tectonic setting discriminants (K2O/Na2O–SiO2/Al2O3, La–Th–Sc, Th–Sc–Zr) indicate an evolved continental island arc (CIA; A2) environment for both terranes, similar to several other CAOB suites of similar age. This common arc source was situated within the Mongol-Okhotsk Ocean during Silurian–Lower Carboniferous time. The present-day Aleutian arc is a possible modern analogue of the depositional setting.  相似文献   

12.
The Dir-Utror volcanic series forms a NE–SW trending belt within the northwestern portion of the Kohistan island arc terrane in the western Himalayas of northern Pakistan. The Kohistan arc terrane comprises a diverse suite of volcanic, plutonic, and subordinate sedimentary rocks of late Mesozoic to Tertiary age, developed prior to and after suturing of the Indo-Pakistan and Asiatic continental blocks. The Dir-Utror volcanic series near Dir is dominated by basaltic-andesite and andesite, with subordinate basalt, high-MgO basalt, dacite, and rhyolite. Porphyritic textures are dominant, with less common aphyric and seriate textures. Plagioclase is the dominant phenocryst in mafic to intermediate rocks, K-feldspar and quartz phenocrysts predominate in the dacites and rhyolites. Chlorite, epidote, albite, and actinolite are the most common metamorphic phases; blue-green amphibole, andesine, muscovite, biotite, kaolinite, sericite, carbonate, and opaques are widespread but less abundant. Phase assemblages and chemistry suggest predominant greenschist facies metamorphism with epidote-amphibolite facies conditions attained locally.Whole rock major element compositions define a calc-alkaline trend: CaO, FeO, MgO, TiO2, Al2O3, V, Cr, Ni, and Sc all decrease with increasing silica, whereas alkalis, Rb, Ba, and Y increase. MORB-normalized trace element concentrations show enrichment of the low-field strength incompatible elements (Ce, La, Ba, Rb, K) and deep negative Nb, P, and Ti anomalies—patterns typical of subduction related magmas. Mafic volcanic rocks plot in fields for calc-alkaline volcanics on trace element discrimination diagrams, showing that pre-existing oceanic crust is not preserved here. All rocks are LREE-enriched, with La=16–112×chondrite, La/Lu=2.6–9.8×chondrite, and Eu/Eu*=0.5–0.9. Dacites and rhyolites have the lowest La/Lu and Eu/Eu* ratios, reflecting the dominant role of plagioclase fractionation in their formation. Some andesites have La/Lu ratios which are too high to result from fractionation of the more mafic lavas; chondrite-normalized REE patterns for these andesites cross those of the basaltic andesites, indicating that these lavas cannot be related to a common parent.The high proportion of mafic lavas rules out older continental crust as the main source of the volcanic rocks. The scarcity of more evolved felsic volcanics (dacite, rhyolite) can be explained by the nature of the underlying crust, which consists of accreted intra-oceanic arc volcanic and plutonic rocks, and is mafic relative to normal continental margins. Andesites with high La, La/Lu, K2O, and Rb may be crustal melts; we suggest that garnet-rich high-pressure granulites similar to those exposed in the Jijal complex may be restites formed during partial melting of the crust.  相似文献   

13.
Late Archaean metagreywackes of the Ranibennur Formation, Dharwar Supergroup, in the Dharwar–Shimoga schist belt of the Western Dharwar Craton (WDC) are texturally and mineralogically immature of the quartz-intermediate type. The SiO2 content in them ranges from 60.58 to 65.26 wt.%. Chemical Index of weathering (CIW) values varies between 50 and 65. 4 indicating a low degree of chemical alteration of the provenance rocks. A high degree of correlation between K2O and Al2O3 (r = ? 0.73) and low Rb/Sr ratios also suggest a low degree of alteration of provenance rocks. Abundances of transition group elements (Cr = 118–221; N = 89–154; V = 89–192 and Sc = 11–16 ppm) as well Zr (132–191 ppm) suggest a mixed mafic–felsic provenance for the metagreywackes. Low HREE and Y content, and low Tb/Yb ratios (0.23–0.41) suggest the presence of tonalite as an important component in the provenance areas. Values of Eu/Eu?(0.78) and Th/Sc (0.55) suggest that the granodioritic upper crust had evolved prior to serving as the provenance. Mixing calculations suggest 50–55 vol.% tonalite, 20–25 vol.% granite, 18–20 vol.% basalt and ~ 5 vol.% komatiite composition for the provenance. Geochemical characteristics of the Ranibennur metagreywackes suggest that sedimentary basin formed in the vicinity of a magmatic arc in a continental island arc setting, and the detritus were shed from the arc rock.  相似文献   

14.
对采自北京地区中元古界下马岭组的页岩样品,进行了地球化学研究,结果表明:主量元素Al2O3、Ca O和Na2O含量明显偏低,K2O和Mn O含量稍微偏低,Si O2、Ti O2及Fe2O3T含量同上地壳基本一致。微量元素及其比值特征显示源岩为混合源岩。稀土元素总量较高,轻稀土富集、重稀土平坦,铕明显负异常、铈弱负异常,各样品稀土元素配分模式与大陆上地壳一致,显示了沉积物具有同源性。源岩为来自于内蒙古隆起的花岗岩类、闪长岩类及基性岩的混合。微量元素比值及铈弱负异常的特征表明中元古界下马岭组页岩为覆水较深的还原环境沉积,源区构造背景为大陆岛弧。  相似文献   

15.
皖北新元古代刘老碑组页岩的地球化学特征及其地质意义   总被引:16,自引:0,他引:16  
从安徽北部新元古代刘老碑组页(泥)岩中采集了11个样品。地球化学分析表明,研究区南部的淮南和凤阳页岩样品SiO2、TiO2、Al2O3、K2O、TFeO和CaO含量分别为55.28%、0.87%、15.60%、2.99%、4.01%和5.83%,接近页岩平均值,只是CaO含量稍高。北部宿县地区页岩样品SiO2、TiO2、Al2O3、K2O、TFeO和CaO含量分别为57.01%、1.82%、20.97%、4.85%、3.31%和0.57%,与南部地区相比,TiO2和K2O含量显著偏高,是其2.1倍和1.6倍。刘老碑组页岩REE总量平均为219×10-6,LREE富集,La/Yb为14.2(9.8~18.6),Eu负异常,Eu/Eu*为0.60(0.54~0.63),但是北部页岩有更高的REE总量(295.8×10-6)和La/Yb比值(17.8)。微量元素分析表明,北部页岩中Sc、V、Zr、Nb和Th较高,南部Co和Pb较高。但是南部和北部却有比较一致的La/Sc(2.29±0.15)、Th/Sc(0.69±0.06)和La/Th(3.29±0.20)比值。La-Th-Sc和Th-Sc-Zr/10判别图清楚地表明,刘老碑组页岩形成于大陆岛弧构造环境,岛弧可能位于研究区的南部边缘。北部页岩明显偏高的TiO2和Al2O3含量以及化学风化指数(CIW)表明北部沉积物的源区经历了更强烈的风化作用。  相似文献   

16.
闽北早古生代岛弧火山岩的发现及其大地构造意义   总被引:25,自引:0,他引:25       下载免费PDF全文
杨树峰  陈汉林 《地质科学》1995,30(2):105-116
利用岩石化学、地球化学、年代学等方法对福建政和地区火山岩系列进行综合研究,确定其为早古生代的岛弧拉斑玄武岩-钙碱性火山岩组合的岛弧火山岩系,揭示了自浙江龙泉经福建政和、建瓯、南平、将乐、赣南延入广东和平、台山、开平一带存在一条早古生代岛弧火山岩系。结合前人的资料对本区早古生代岛弧的形成和演化作了探讨。  相似文献   

17.
The provenance and tectonic setting of sandstones from the Bombouaka Group of the Voltaian Supergroup, in the northeastern part of Ghana, have been constrained from their petrography and whole-rock geochemistry. Modal analysis carried out by point-counting sandstone samples indicates that they are quartz arenites. The index of compositional variability values and SiO2/Al2O3, Zr/Sc, and Th/Sc values indicates that the sediments are mature. The sandstones are depleted in CaO and Na2O. They are, however, enriched in K2O, Ba, and Rb relative to average Neoproterozoic upper crust. These characteristics reflect intense chemical weathering in the source region as proven by high weathering indices (i.e., CIA, PIA, and CIW). In comparison with average Neoproterozoic upper crust, the sandstones show depletion by transition metals and enrichment by high field strength elements. They generally show chondrite-normalized fractionated light rare-earth element (LREE) patterns (average LaN/SmN = 4.40), negative Eu anomalies (average Eu/Eu* = 0.61), and generally flat heavy rare-earth elements (HREE) (average GdN/YbN = 1.13). The sandstones have La/Sc, Th/Sc, La/Co, Th/Co, Th/Cr, and Eu/Eu* ratios similar to those of sandstones derived from felsic source. Mixing calculations using the rare-earth elements (REE) suggests 48% tonalite–trondhjemite–granodiorite and 52% granite as possible proportions for the source of the sandstones. Both the petrographic and whole-rock geochemical data point to a passive margin setting for the sandstones from the Bombouaka Group.  相似文献   

18.
The development of a regional stratigraphy in Palaeoproterozoic basins within the Tanami region, Northern Australia has been hindered by the difficulty of discriminating sedimentary units and facies across this isolated and poorly exposed basin. A regional stratigraphy is important as it provides constraints on sedimentary basin evolution and assists in gold exploration. Gold is known to be more concentrated in certain rock formations. Based on Nd isotopes and whole rock geochemistry, five main sedimentary events have been identified in the Tanami region. Some sedimentary units were derived from homogeneous local sources, whereas others contain evidence of a well-mixed fine-grained remote provenance. Within the basins, major gold-bearing lithologies are characterised by mafic source indicators: (1) high Cr/Th ratios; (2) low Th/Sc ratios; (3) low (La/Yb)PAAS ratios relative to Post-Archaean Average Shale (Taylor and McLennan 1985); (4) Eu anomalies equal to ∼1; and (5) distinctive ranges in initial ε Nd values. Potential future exploration target areas have been identified in the Tanami region at the Cashel and Sunline prospects using these geochemical parameters.  相似文献   

19.
下扬子地区早古生代发育3套重要的深水相黑色岩系,分别为下寒武统荷塘组和黄柏岭组、上奥陶统五峰组、下志留统高家边组和相当层位的霞乡组。27件样品的微量和稀土元素分析结果显示:此3套黑色岩系具有Li、Be、Rb、Ba、Cs、W、Th、U、Cd、Bi、Pb等元素富集,Sc、Sr,Cr、Cu、Ga、Co、Ni等元素亏损,稀土元素总量较高,轻重稀土分异明显和具负Eu异常等壳源物质特征;微量不活动元素含量和比值特征的构造环境判别表明,下扬子地区早古生代黑色岩系构造环境为大陆岛弧和活动大陆边缘,兼具被动大陆边缘特征;母岩以上地壳的再旋回沉积物和后太古宙地层沉积物为主,部分为未分异的太古宙地壳和玄武岩成分,源岩性质主要为安山岩、英安岩和沉积岩;沉积环境为缺氧的半深海、深海环境。在上述研究基础上,对物源的来源进行了探讨,认为物源主要来自江南造山带。  相似文献   

20.
Analysis of the litho-geochemistry of fine-grained terrigenous rocks (metapelites, shales, and mudstones) of sedimentary megasequences in the Southern Urals, Uchur-Maya area, and the Yenisei Kryazh indicates that Riphean sequences in these regions are dominated by chlorite-hydromica rocks, with montmorillonite and potassic feldspar possibly occurring only in some of the lithostratigraphic units. According to the values of their hydrolysate modulus, most clay rocks from the three Riphean metamorphosed sedimentary sequences are normal or supersialites, with hydrosialites and hydrolysates playing subordinate roles. The most lithochemicaly mature rocks are Riphean clays in the Yenisei Kryazh (Yenisei Range). The median value of their CIA is 72, whereas this index is 70 for fine-grained aluminosilicate rocks from the Uchur-Maya area and 66 for fine-grained terrigenous rocks of the Riphean stratotype. Hence, at ancient water provenance areas from which aluminosilicate clastic material was transported in sedimentation basins in the southwestern (in modern coordinates) periphery of the Siberian Platform, the climate throughout the whole Riphean was predominantly humid. At the same time, the climate at the eastern part of the East European Platform was semiarid-semihumid. The K2O/Al2O3 ratio, which is employed as an indicator of the presence of petro-and lithogenic aluminosilicate clastic component in Riphean sedimentary megasequences, shows various tendencies. According to their Sc, Cr, Ni, Th, and La concentrations and the Th/Sc ratio, the overwhelming majority of Riphean shales and mudstones notably differ from the average Archean mudstone and approach the average values for post-Archean shales. This suggests that mafic Archean rock in the provenance areas did not play any significant role in the origin of Riphean sedimentary megasequences. The Co/Hf and Ce/Cr ratios of the terrigenous rocks of the three Riphean megaseqeunces and their (Gd/Yb) N and Eu/Eu* ratios place these rocks among those containing little (if any) erosion products of primitive Archean rocks. According to various geochemical data, the source of the great majority of fine-grained aluminosilicate clastic rocks in Riphean sediment megasequences in our study areas should have been mature sialic (felsic), with much lower contents of mafic and intermediate rocks as a source of the clastic material. The REE patterns of the Riphean shales and metapelites in the Bashkir Meganticlinorium, Uchur-Maya area, and Yenisei Kryazh show some features that can be regarded as resulting from the presence of mafic material in the ancient provenance areas. This is most clearly seen in the sedimentary sequences of the Uchur-Maya area, where the decrease in the (La/Yb) N ratio up the sequence of the fine-grained terrigenous rocks from 15–16.5 to 5.8–7.1 suggests that mantle mafic volcanics were brought to the upper crust in the earliest Late Riphean in relation to rifting. Analysis of the Sm-Nd systematics of the Riphean fine-grained rocks reveals the predominance of model age values in the range of 2.5–1.7 Ga, which can be interpreted as evidence that the rocks were formed of predominantly Early Proterozoic source material. At the same time, with regard for the significant role of recycling in the genesis of the upper continental crust, it seems to be quite possible that the ancient provenance areas contained Archean complexes strongly recycled in the Early Proterozoic and sediments formed of their material. An additional likely source of material in the Riphean was mafic rocks, whose variable contribution is reflected in a decrease in the model age values. Higher Th and U concentrations in the Riphean rocks of the Yenisei Kryazh compared to those in PAAS indicate that the sources of their material were notably more mature than the sources of fine-grained aluminosilicate clastic material for the sedimentary megaseqeunces in the Southern Urals and Uchur-Maya area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号