首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Systematic field mapping of fracture lineaments observed on aerial photographs shows that almost all of these structures are positively correlated with zones of high macroscopic and mesoscopic fracture frequencies compared with the surroundings. The lineaments are subdivided into zones with different characteristics: (1) a central zone with fault rocks, high fracture frequency and connectivity but commonly with mineral sealed fractures, and (2) a damage zone divided into a proximal zone with a high fracture frequency of lineament parallel, non-mineralized and interconnected fractures, grading into a distal zone with lower fracture frequencies and which is transitional to the surrounding areas with general background fracturing. To examine the possible relations between lineament architecture and in-situ rock stress on groundwater flow, the geological fieldwork was followed up by in-situ stress measurements and test boreholes at selected sites. Geophysical well logging added valuable information about fracture distribution and fracture flow at depths. Based on the studies of in-situ stresses as well as the lineaments and associated fracture systems presented above, two working hypotheses for groundwater flow were formulated: (i) In areas with a general background fracturing and in the distal zone of lineaments, groundwater flow will mainly occur along fractures parallel with the largest in-situ rock stress, unless fractures are critically loaded or reactivated as shear fractures at angles around 30° to σH; (ii) In the influence area of lineaments, the largest potential for groundwater abstraction is in the proximal zone, where there is a high fracture frequency and connectivity with negligible fracture fillings. The testing of the two hypotheses does not give a clear and unequivocal answer in support of the two assumptions about groundwater flow in the study area. But most of the observed data are in agreement with the predictions from the models, and can be explained by the action of the present stress field on pre-existing fractures.  相似文献   

2.
The aim of the present study is to investigate the lineaments of Kolli hills of Tamil Nadu State for which CARTOSAT-1 satellite’s DEM output has been made use of. The extracted lineaments were analysed using ArcGIS and Rockworks software. The total number and length of lineaments are 523 and 943.81 km, respectively. Shorter lineaments constitute about 3/4th of the total number of lineaments. The density of the lineaments varies from 0 to 7.41 km/km2, and areas of very high to high density are restricted to the south central, central and north eastern parts, and these areas reflect the high degree of rock fracturing and shearing which makes these areas unsuitable for the construction of dams and reservoirs. However, these areas could be targeted for groundwater exploitation as they possess higher groundwater potential. The lineaments are oriented in diverse directions. However, those orienting in ENEWSW, NE-SW and NW-SE are predominating followed by those oriented in sub E-W and sub N-S directions. These orientations corroborate with results of previous regional studies and with orientations of prominent geological structures and features of the study area. Distinct variation in the predominant orientations of lineaments of varied sizes is observed, while the shorter ones are oriented in either NW-SE or NNW-SSE directions, the longer ones are oriented in either NE-SW or ENE-WSW. A comparative analysis of lineament datasets of the eight azimuth angles and the final lineament map underlines the need to extract lineaments from various azimuth angles to get a reliable picture about the lineaments.  相似文献   

3.
The Wajid Group is a Cambro-Permian sedimentary succession in southwest Saudi Arabia. This group is a well-known groundwater aquifer in the Wadi Al-Dawasir and Najran areas. The group also represents siliciclastic hydrocarbon reservoirs in the Rub' Al-Khali Basin. The Wajid Group is exposed in an area extending from Wadi Al-Dawasir southward to Najran city. This study aims to map and characterize the lineament traces of the Wajid Group outcrops. Landsat-8 OLI/TIRS satellite images with 30-m resolution, Spot-5 satellite images with 2.5-m resolution and SRTM digital elevation models (DEM) with 30-m resolution were used for lineament trace detection. Those lineament traces supplemented by aeromagnetic lineaments detected from reduced to pole magnetic anomaly map of the studied outcrop. Multi-scale lineament trace maps were generated, and the lineament datasets, including orientation and length, were analyzed statistically. Eight lineament trace trends were identified including NW-SE, NNW-SSE, N-S, NNE-SSW, NE-SW, ENE-WSW, E-W, and WNW-ESE. The northerly, northwesterly, and northeasterly trending lineament traces are predominant. The lineament trace lengths are generally followed the power law distribution. The lineament trace trends were validated through field investigation of the Wajid Group outcrop. The reported outcrop fracture trends are consistent with major lineament trace trends. Lineaments within the Wajid Group outcrop are also consistent with those of the southern portion of the Arabian Shield. The results of this study provide insight into the tectonic origin of the Wajid Group outcrop lineaments, and understanding of the lineaments distribution which can help to predict the fluid flow behavior within the groundwater fractured aquifers or hydrocarbon fractured reservoirs in Rub’ Al-Khali Basin.  相似文献   

4.
The aim of this research is to determine the relationship between groundwater flow and water quality of different ground and surface water basins in the southwest Turkey. In addition, groundwater vulnerability is assessed taking into consideration groundwater flow and quality. The autochthonous Beydaglari limestone is the major karstic aquifer in the region. According to the groundwater level map of alluvium aquifers in the basins, groundwater discharge toward the carbonate aquifer is direct and indirect. The hydrogeological connection between ground and surface water basins occurs via the karstic aquifer located at the bottom of the alluvium bottom. In Egirdir lake, water also discharges in the karstic aquifer via karstic sinkholes at the western border of the lake. In the research area, general groundwater discharge is toward the Mediterranean Sea by means of autochthonous carbonate system, according to hydrogeological investigations, research of lineament and hydraulic conductivities. This result is supported by the locations of lineaments and shore springs discharging from the limestone. In addition, spreading of contaminants via karstic aquifer to great distance has been clearly identified.  相似文献   

5.
The NE-oriented Dasht-e-Arjan graben is located 65 km west of Shiraz and has resulted from the active Kare-e-Bas fault segmentations. This extensional graben bounded by two fault system east-Arjan and west-Arjan to the Shahneshin and Salamati anticline. In these study using Landsat 7 ETM images with resolution 2.5 m and directional filtering in the four azimuths and semi-automatic technique for linear structure in the study area. Using the obtained data from extracted lineaments, the rose diagrams of the main strike lineaments are well confirm with field measurements of faults with N56° ± 4°E direction. The structural lineaments of the study area show that the Dasht-e-Arjan area is underlain by the limestone, sandstone, and marl. LANDSAT imagery of the area has been analyzed and interpreted in order to determine the lineament and groundwater quality across the area. The fracture is structurally controlled and mostly influences both the groundwater and surface water pollution and flow directions in the Dasht-e-Arjan. Using visual interpretation, determining the lineaments on the satellite image is very difficult and subjective, and it requires an experienced interpreter. In this study, the lineament analysis is undertaken to examine the orientation of the lineament, the relationship between lineaments and tectonic features and groundwater quality. Lineament density maps show that the lineament density is high around areas. Areas having high lineament density represent areas with relatively high groundwater pollution. Field observations agreed with the results from the analysis of the imagery.  相似文献   

6.
Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 pixels subscene acquired on 21 March 2000 covering the northwestern part of Yunnan Province has been digitally processed using ER Mapper software. This article aims to produce lineament density map that predicts favorable zones for hydrothermal mineral occurrences and quantify spatial associations between the known hydrothermal mineral deposits. In the process of lineament extraction a number of image processing techniques were applied. The extracted lineaments were imported into MapGIS software and a suitable grid of 100 m×100 m was chosen. The Kriging method was used to create the lineament density map of the area. The results show that remote sensing data could be useful to extract the lineaments in the area. These lineaments are closely correlated with the faults obtained through other geological investigation methods. On comparing with field data the lineament-density map identifies two important high prospective zones, where large-scale deposits are already existing. In addition the map highlights unrecognized target areas that require follow up investigation.  相似文献   

7.
月球线性构造分类体系研究   总被引:1,自引:0,他引:1  
罗林  刘建忠  张莉  籍进柱  郭弟均  刘敬稳 《岩石学报》2017,33(10):3285-3301
月球线性构造是月球科学研究中的重要组成部分,建立月球线性构造分类体系是月球地质图编研的关键。前人对月球线性构造的分类研究主要基于月表的形貌特征,划分的线性构造类型参差不齐,尚未形成一个公认的、规范的、具有普适性的线性构造分类体系,以至于分类结果的可对比性差、参考性和易操作性较低,不利于月球线性构造纲要图的编制。并且月球线性构造的概念混乱、术语不统一,存在"同物异名、同词异义、异词同义、涵义不明"的现象,不利于全球性的统一制图和成果的展示及使用。鉴于此,本文采用多指标组合的分类方法,以成因机制和形貌特征作为主要指标,兼顾物质组成,再结合线性构造形成的动力学机制,建立了符合月球动力学演化背景的、统一规范的线性构造类型划分的新方案,避免了单以形貌特征为依据来分类出现的混乱状态,具有较好的科学性和可操作性。将月球的线性构造类型划分为:内动力地质作用形成的线性构造,包括皱脊、月溪、地堑、断裂;外动力地质作用形成的线性构造,包括坑缘断裂和坑底断裂,以及多成因机制、多动力来源作用形成的特殊类型如坑链等。在此基础上,并利用多源遥感数据建立了易于判别且具有代表性的线性构造识别标志,可为全月球线性构造的统一制图提供识别依据。  相似文献   

8.
The relationship between major structural lineaments and locations of ore deposits in Iran has been investigated using geospatial data. In the course of lineament extraction, satellite images, aeromagnetic data, digital elevation model (DEM) and structural maps were processed and the lineaments and large-scale faults were identified. The extracted lineaments, based on subjective assessment, from each dataset were imported into GIS software and the “lineament map of Iran” was prepared by data integration. The analysis for selecting significant lineament was mainly based on fault correlated lineament and lineament with field map fractures, which was sets as benchmarks for compiling a final output map. Four major regional lineament trends of N–S, E–W, NW–SE and NE–SW were identified in the data of all images, which are corresponded to the structural zones and the major fault systems of Iran. The mineral deposits (active and abandoned) and mineral indications database compiled are based on the published maps, papers, reports and the ore deposits data files of Geological Survey of Iran. Integrating the output of these two datasets by GIS software resulted in the “Combined Map of Lineaments and Gold, Copper, Lead, Zinc and Iron Deposits of Iran”. The number and distance of ore deposits toward the lineaments were processed by the counting and cumulative methods in the GIS software's. Approximately, over 90% of the ore deposits of Iran are located in the central part of the lineaments (15 km on each side) which are concordant with a definition of large lineament. About 50% of these mineral deposits are closer than 5 km to the lineaments. There are significant correlations between lineament density and intersections with ore deposits occurrences. The observed associations at this scale are informative in establishing exploration strategy and decreasing exploration risks for detailed work on ore deposit scale.  相似文献   

9.
A DRASTIC-model method based on a geographic information system (GIS) was used to study groundwater vulnerability in Egirdir Lake basin (Isparta, Turkey), an alluvial area that has suffered agricultural pollution. ‘Lineament’ and ‘land use’ were added to the DRASTIC parameters, and an analytic hierarchy process (AHP) method determined the rating coefficients of each parameter. The effect of lineament and land-use parameters on the resulting vulnerability maps was determined with a single-parameter sensitivity analysis. Of the DRASTIC parameters, land use affects the aquifer vulnerability map most and lineament affects it least, after topography. A simple linear regression analysis assessed the statistical relation between groundwater nitrate concentration and the aquifer vulnerability areas; the highest R 2 value was obtained with the modified-DRASTIC-AHP method. The DRASTIC vulnerability map shows that only the shoreline of Egirdir Lake and the alluvium units have high contamination potential. In this respect, the modified DRASTIC vulnerability map is quite similar. According to the modified-DRASTIC-AHP method, the lakeshore areas of Senirkent-Uluborlu and Hoyran plains, and all of the Yalvaç-Gelendost plain, have high contamination potential. Analyses confirm that groundwater nitrate content is high in these areas. By comparison, the modified-DRASTIC-AHP method has provided more valid results.  相似文献   

10.
基于MAPGIS的遥感特征线分析方法设计   总被引:3,自引:2,他引:1  
对遥感图像进行地质解译,获得的特征线图,是基础地学研究和矿产预测的有利工具。为弥补人的视觉识别特征线的局限性,需用对这些特征线进行进一步的定量分析、解译,获取更多的地质信息。作者在本文中通过计算构造复杂度量,划分出受构造线影响地区的不同构造复杂度。在此基础上,用VC++在MAPGIS开发平台上,开发了遥感特征线分析系统。该系统对特征线图进行了定量化的划分,划分后的构造复杂度分布图可与物探、化探数据  相似文献   

11.
The Ground Penetrating Radar (GPR) is a newly developing geophysical tool for imaging the sub-surface and is potentially useful in groundwater exploration. We test its usefulness in characterizing a groundwater rich lineament near Gajularamaram in the Hyderabad granite terrain, where groundwater is limited to soil, weathering zone and lineaments. The lineament is 2 km long and 50–100 m wide, and oriented in WNW-ESE direction. It is characterized by many closely spaced sub-vertical fractures and faults, majority of which are parallel to the lineament. On either sides of the lineament, sub-horizontal sheet joints are abundant. The lineament is saturated with groundwater that discharge as springs at some places. About 450 m long, 400–100 MHz GPR data (~5–30 m depth) were acquired along five profiles across the lineament. In the lineament, soil thickness varies from ~0.5 m to 5 m, and is underlain by weathered granite. In the WNW part, a thick weathering zone (~15 m) is present and a 10 m wide vertical anomaly zone (lineament) is also present. The presence of shallow reflectors at 1 m depth in the lineament is attributed to the groundwater surface. The GPR images reveal many sub horizontal to gently dipping reflectors, which are interpreted to be the sheet joints. The GPR data clearly reveal the saturated lineament, from which groundwater may migrate laterally to long distance through the sheet joints. We demonstrate the GPR as a rapid geophysical tool that can be used successfully to explore the nearsurface groundwater.  相似文献   

12.
Identifying a good site for groundwater exploitation in hard-rock terrains is a challenging task. In Sinai, Egypt, groundwater is the only source of water for local inhabitants. Interpretation of satellite data for delineation of lithological units and weathered zones, and for mapping of lineament density and their trends, provides a valuable aid for the location of groundwater promising areas. Complex deformational histories of the wide range of lithological formations add to the difficulty. Groundwater prospect mapping is a systematic approach that considers the major controlling factors which influence the aquifer and quality of groundwater. The presented study aims to delineate, identify, model and map groundwater potential zones in arid South Sinai using remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature. The controlling-factor thematic maps are each allocated a fixed score and weight, computed by using a linear equation approach. Furthermore, each weighted thematic map is statistically computed to yield a groundwater potential zone map of the study area. The groundwater potential zones thus obtained were divided into five categories (very poor, poor, moderate, good and very good) and were validated using the relation between the zone and the spatial distribution of productive wells and of previous geophysical investigations from a literature review. The results show the groundwater potential zones in the study area, and create awareness for better planning and management of groundwater resources.  相似文献   

13.
Water is a fluctuating resource making it difficult to measure in time and in space. To demonstrate the efficiency of the geographic information system (GIS) for groundwater studies, information on the parameters controlling groundwater such as lithology, geomorphology and lineament analysis were analyzed. LISS-III and Landsat satellite image of the area was used to infer information on the geologic lineaments and geomorphology. To delineate linear features enhancement and direction, filtering was performed on single bands of Landsat images. Thematic maps for geology, slope, geomorphology and lineament were prepared and integrated in GIS by assigning the weights and ranking to various parameters controlling the occurrence of groundwater to generate the groundwater potential map for the study area. The results indicate that the floodplain of river and its adjoining areas have very good groundwater potential, whereas the steeply sloping area in the northern part having high relief and slope possesses poor groundwater potential.  相似文献   

14.
Fracture-controlled lineaments, commonly seen where brittle basement is exposed at the earth's surface, are generally restricted to a small number of sets, with angles of 45–90° between sets. The length-frequency distribution of lineaments in each set follows a truncated Poisson function. Such lineaments usually show almost no shearing offset, suggesting a tensile origin. A simple mechanical model of tensile fracturing is used to explain the spacing, directions, and length of lineaments, as well as their depth-frequency distribution. Results suggest that the penetration depth of tensile fractures which produce lineaments at the earth's surface is directly related to their length and that the fracture density is inversely proportional to fracture depth. Finally, the angles between lineament sets may be controlled by the ratio of strength of unfractured rock to that of pre-existing fractures, which might heal with time. The most likely source of tension is tectonic uplift. Fractures due to typical uplifts of 0.5–1 km over distances of 10–100 km may penetrate as brittle fractures to several kilometres into the crust, perhaps to the depth at which seismic activity ceases.  相似文献   

15.
Hydrogeomorphology and lineament studies have been completed by using satellite data for the Pageru river basin, Cuddapah district, Andhra Pradesh, India through visual interpretation of IRS-1B-LISS II FCC (57J/6, J/7, J/10 and J/11) on a 1:50,000 scale. The area has been visually interpreted to delineate various hydrogeomorphic units and lineaments for the development of groundwater. From these studies, various geomorphic units were classified as favourable, moderately favourable and poor zones of groundwater. The integration of geomorphology and lineament studies reveal that shallow groundwater occurrence is controlled by geomorphological characteristics whereas faults/fractures control the yield of groundwater at intermediate depths.  相似文献   

16.
Pump tests and geophysical logs acquired in a fluvial sandstone aquifer within the resource-rich Moncton Subbasin of New Brunswick, Canada, have been used to characterize fracture patterns and flow directions for purposes of developing a water-wellfield protection plan. Fracture patterns consist of three high-angle sets, and a low-angle set parallel to bedding. NW-trending high-angle fractures, predominantly in fluvial sandstone units, appear to be most important in controlling groundwater flow directions. This contrasts with an earlier regional hydrogeological study that attributed most flow to sub-horizontal bedding-plane fractures. Water levels monitored during a 72-h pump test revealed drawdown extension parallel to the NW-trending fracture set. Drawdown curves indicate that the aquifer is laterally constrained—likely reflecting differences in fracturing observed between the channelized sandstone and surrounding shale units. As a result, groundwater flow induced by pumping is influenced by both fracture anisotropy and by the heterogeneity of the fluvial depositional environment. Relationships observed between fracture patterns, regional geological structure and lithology provide a basis for extrapolating the conceptual model to other nearby areas in the region, where potential impacts of geological resource development on groundwater are attracting public concern.  相似文献   

17.
A map indicating zones related to groundwater on the mountainous terrain of the island of Naxos, Greece, was produced, using statistics, remote sensing and geographic information system (GIS) techniques. Naxos mainly consists of polydeformed and polymetamorphosed crystalline formations where groundwater is restricted to secondary porosity; its movement is erratic and occurs along lithological contacts, solution openings, faults and fractures. As in the most central Aegean islands, water in Naxos is a scarce commodity. Many dry holes have been drilled. It is known that in areas of such geology, linear features may play a significant role in their hydrogeological regime. Various lineaments’ directional properties were calculated and statistically tested against collected spring data using GIS techniques in an attempt to evaluate the hydrogeological significance of remotely sensed lineaments. Based on the results achieved, a map was prepared to contribute to conventional ground surveys in the selection of drilling sites. The reliability of the map was tested with existing borehole data. The results obtained encourage the use of statistical analysis on remotely sensed lineaments for groundwater targeting studies in crystalline mountainous areas.  相似文献   

18.
Hmaima–El Gara area is located in Central–Western Tunisia and is known as an important geothermal province. In this study, we attempt to delineate the subsurface structures of the area using integrated interpretation of gravity, electrical and magnetotelluric data. The Hmaima thermal aquifer, associated with fractured Aptian reefal limestones, is characterized by high gravity and high resistivity. Horizontal gradient and Euler deconvolution method has been applied to the gravity data and provided fast information about both the depth and trends of the shallower subsurface structures in the area. As several of the mapped lineaments correlate with published geological fault trends, the other lineaments may be indicators of new insights for hydrothermal exploitation in the Hmaima–El Gara area (economical potential favorite zones).  相似文献   

19.
欧亚大陆风云影像线性构造信息提取及其地质分析   总被引:2,自引:1,他引:1  
杨巍然  隋志龙 《地学前缘》2004,11(4):551-558
通过欧亚大陆风云影像的空间增强、光谱增强、辐射增强等系列处理和地质解释 ,提取了发育于该区的各种线性构造的相关信息。根据性质和规模将线性构造划分为大洋俯冲带、大陆俯冲带、大陆碰撞带、巨型线性构造、区域线性构造和局部线性构造等六类。文中重点介绍了乌拉尔—阿曼巨型线性构造带和阿尔卑斯大陆碰撞带的影像特征和地质意义。根据各类线性构造的特征和相互关系 ,突出了乌拉尔—阿曼和伊尔库茨克—横断山两条巨型线性构造带的地位 ,并以它们为界划分了三个构造域 :西亚构造域以印度板块的俯冲为特色 ,导致青藏高原的隆升和陆内强烈变形 ;东亚构造域最为重要的特征是太平洋板块的俯冲 ,形成一系列岛弧体系 ,并使大陆内部出现大量岩浆活动和强烈的构造变动 ;欧洲构造域主要为非洲—阿拉伯板块与欧洲板块的碰撞 ,二者之间没有明显的俯冲带 ,而有一个较宽广的接触带 ,强烈的变形集中在这一带内 ,而大陆内部的构造变动比较微弱。这种构造格局在欧亚大地水准面异常图上有明显反映 ,表明与深部地质作用过程有关。三个构造域的主导线性构造的方向组成了一个向南弯曲的弧形 ,弧顶位于西亚构造域。大陆巨型线性构造带呈经向和纬向展布 ,具长期发育特征 ,从更大尺度上看 ,板块边界线性构造也是呈经向和纬?  相似文献   

20.
The El Minia governorate lies within the Nile Valley, surrounded by calcareous plateaus to the east and west. The present study focuses on the hydrogeochemistry of the Eocene limestone aquifer at some wadis in the east El Minia governorate, Eastern Desert, Egypt. Hydrogeologically, two main aquifers are encountered in the study area, namely the Maghagha marly limestone and the Samalut chalky limestone aquifers. The Maghagha aquifer is composed of alternating layers of marly limestone and shale with thicknesses ranging from 3.49 m to 177.05 m and a groundwater depth ranging from 8.5 m to 59.27 m which reflects low groundwater potentiality. The groundwater salinity representing this aquifer ranges from 603.5 mg/L to 978.5 mg/L, reflecting fresh water type. Samalut aquifer is made up of chalky, cavernous and fractured limestone with thickness ranging from 30 m to 205 m and groundwater depth ranging from 9 m to 86.77 m, which indicates good groundwater potential. The groundwater salinity of the concerned aquifer ranges from 349.7 mg/L to 2043.9 mg/L, reflecting fresh to possibly brackish water types. Groundwater in the study area is of meteoric water origin; recent recharge is mainly controlled through the presence of fractures and their densities. The majority of groundwater samples in the study area are suitable for drinking and irrigation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号