首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
Gimli beach in Manitoba is one of the lowest elevation beaches in the southern Lake Agassiz basin, and is a distinct ridge composed of bedded sand and gravel that rises above the lake plain and extends for more than 40 km. Ten new optically stimulated luminescence (OSL) ages from Gimli beach yield ages mostly ranging from 9.7 ± 0.7 to 10.5 ± 0.8 ka (average 10.3 ± 0.5 ka), which is older by 0.6 to >1.0 ka than age estimates of previous researchers. Two of our new OSL ages are notably older than the others, dating to ~11.3 ± 0.8 and 13.9 ± 1.0 ka, which we attribute to poorly bleached sands. We ascribe an age of about 10 ka to Gimli beach, which is several centuries before overflow from Lake Agassiz and its vast drainage basin shifted from the western Great Lakes to glacial Lake Ojibway and the St. Lawrence Valley.  相似文献   

2.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   

3.
The early Holocene final drainage of glacial Lake Minong is documented by 21 OSL ages on quartz sand from parabolic dunes and littoral terraces and one radiocarbon age from a lake sediment core adjacent to mapped paleoshorelines in interior eastern Upper Michigan. We employ a simple model wherein lake-level decline exposes unvegetated littoral sediment to deflation, resulting in dune building. Dunes formed subsequent to lake-level decline prior to stabilization by vegetation and provide minimum ages for lake-level decline. Optical ages range from 10.3 to 7.7 ka; 15 ages on dunes adjacent to the lowest Lake Minong shoreline suggest final water-level decline ∼ 9.1 ka. The clustering of optical ages from vertically separated dunes on both sides of the Nadoway-Gros Cap Barrier around 8.8 ka and a basal radiocarbon date behind the barrier (8120 ± 40 14C yr BP [9.1 cal ka BP]) support the hypothesis that the barrier was breached and the final lake-level drop to the Houghton Low occurred coincident with (1) high meltwater flux into the Superior basin and (2) an abrupt, negative shift in oxygen isotope values in Lake Huron.  相似文献   

4.
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.  相似文献   

5.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

6.
Knowledge of the glaciation of central East Iceland between 15 and 9 cal. ka BP is important for the understanding of the extent, retreat and dynamics of the Icelandic Ice Sheet. Crucially, it is not known if the key area of Fljótsdalur‐Úthérað carried a fast‐flowing ice stream during the Last Glacial Maximum; the timing and mode of deglaciation is unclear; and the history and ages of successive lake‐phases in the Lögurinn basin are uncertain. We use the distribution of glacial and fluvioglacial deposits and gradients of former lake shorelines to reconstruct the glaciation and deglaciation history, and to constrain glacio‐isostatic age modelling. We conclude that during the Last Glacial Maximum, Fljótsdalur‐Úthérað was covered by a fast‐flowing ice stream, and that the Lögurinn basin was deglaciated between 14.7 and 13.2 cal. ka BP at the earliest. The Fljótsdalur outlet glacier re‐advanced and reached a temporary maximum extent on two separate occasions, during the Younger Dryas and the Preboreal. In the Younger Dryas, about 12.1 cal. ka BP, the outlet glacier reached the Tjarnarland terminal zone, and filled the Lögurinn basin. During deglaciation, a proglacial lake formed in the Lögurinn basin. Through time, gradients of ice‐lake shorelines increased as a result of continuous but non‐uniform glacio‐isostatic uplift as the Fljótsdalur outlet glacier retreated across the Valþjófsstaður terminal zone. Changes in shoreline gradients are defined as a function of time, expressed with an exponential equation that is used to model ages of individual shorelines. A glaciolacustrine phase of Lake Lögurinn existed between 12.1 and 9.1 cal. ka BP; as the ice retreated from the basin catchment, a wholly lacustrine phase of Lake Lögurinn commenced and lasted until about 4.2 cal. ka BP when neoglacial ice expansion started the current glaciolacustrine phase of the lake.  相似文献   

7.
The continental margin of southern South Africa exhibits an array of emergent marginal marine sediments permitting the reconstruction of long-term eustatic sea-level changes. We report a suite of optical luminescence ages and supplementary amino acid racemization data, which provide paleosea-level index points for three sites on this coastline. Deposits in the Swartvlei and Groot Brak estuaries display tidal inlet facies overlain by shoreface or eolian facies. Contemporary facies relations suggest a probable high stand 6.0-8.5 m above modern sea level (amsl). At Cape Agulhas, evidence of a past sea-level high stand comprises a gravel beach (ca. 3.8 m amsl) and an overlying sandy shoreface facies (up to 7.5 m amsl). OSL ages between 138 ± 7 ka and 118 ± 7 ka confirm a last interglacial age for all marginal marine facies. The high stand was followed by a sea-level regression that was associated with the accumulation of eolian dunes dating to between 122 ± 7 ka and 113 ± 6 ka. These data provide the first rigorous numerical age constraints for last interglacial sea-level fluctuations in this region, revealing the timing and elevation of the last interglacial high stand to broadly mirror a number of other far-field locations.  相似文献   

8.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66-140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20-66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202-3206 m (+ 8-12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.  相似文献   

9.
博斯腾湖湖泊沉积物光释光年代测量*   总被引:2,自引:0,他引:2  
使用光释光年代学的单片再生法测量了博斯腾湖沉积剖面中碳酸盐泥及粉砂质泥底部的浅湖相灰色粉细砂和风成沙的年龄,对剖面上部碳酸盐层中陆生植物残体进行了AMS 14 C测年。通过不同测片的等效剂量(De)值的分布状况评价了样品的晒褪程度,选择不随灵敏度校正后的自然释光信号变化的相对集中的等效剂量(De)值计算了样品的埋藏年龄。通过这些年龄结果的对比,发现石英矿物的OSL年龄和AMS 14 C年龄在地层上是一致的,表明尽管在浅湖相细砂中存在不完全晒褪,但根据相对较小而集中的De值计算得到的年龄结果是可靠的。这些年龄结果和地层资料揭示末次冰消期以来至早全新世,博斯腾湖处于无水干盆地向深水湖泊转化的浅水湖泊状态,现代深水博斯腾湖大约形成于距今8ka前后。  相似文献   

10.
We have developed an 87Sr/86Sr, 234U/238U, and δ18O data set from carbonates associated with late Quaternary paleolake cycles on the southern Bolivian Altiplano as a tool for tracking and understanding the causes of lake-level fluctuations. Distinctive groupings of 87Sr/86Sr ratios are observed. Ratios are highest for the Ouki lake cycle (120-95 ka) at 0.70932, lowest for Coipasa lake cycle (12.8-11.4 ka) at 0.70853, and intermediate at 0.70881 to 0.70884 for the Salinas (95-80 ka), Inca Huasi (~ 45 ka), Sajsi (24-20.5 ka), and Tauca (18.1-14.1 ka) lake cycles. These Sr ratios reflect variable contributions from the eastern and western Cordilleras. The Laca hydrologic divide exerts a primary influence on modern and paleolake 87Sr/86Sr ratios; waters show higher 87Sr/86Sr ratios north of this divide. Most lake cycles were sustained by slightly more rainfall north of this divide but with minimal input from Lake Titicaca. The Coipasa lake cycle appears to have been sustained mainly by rainfall south of this divide. In contrast, the Ouki lake cycle was an expansive lake, deepest in the northern (Poópo) basin, and spilling southward. These results indicate that regional variability in central Andean wet events can be reconstructed using geochemical patterns from this lake system.  相似文献   

11.
The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U-Th dated 2.46 ± 0.10 to 2.10 ± 0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46-2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.  相似文献   

12.
This study establishes for the first time the chronology and limnological history of Lake Amora (Dead Sea basin, Israel), whose deposits (the Amora Formation) comprise one of the longest exposed lacustrine records of the Pleistocene time. The Amora Formation consists of sequences of laminated primary aragonite and silty-detritus, Ca-sulfate minerals, halite and clastic units. This sedimentary sequence was uplifted and tilted by the rising Sedom salt diapir, exposing ∼320 m of sediments on the eastern flanks of Mt. Sedom (the Arubotaim Cave (AC) section).The chronology of the AC section is based on U-disequilibrium dating (230Th-234U and 234U-238U ages) combined with floating δ18O stratigraphy and paleomagnetic constraints. The determination of the 230Th-234U ages required significant corrections to account for detrital Th and U. These corrections were performed on individual samples and on suites of samples from several stratigraphic horizons. The most reliable corrected ages were used to construct an age-elevation model that was further tuned to the oxygen isotope record of east Mediterranean foraminifers (based on the long-term similarity between the sea and lake oxygen isotope archives).The combined U-series-δ18O age-elevation model indicates that the (exposed) Amora sequence was deposited between ∼740 and 70 ka, covering seven glacial-interglacial cycles (Marine Isotope Stages (MIS) 18 to 5).Taking the last glacial Lake Lisan and the Holocene Dead Sea lacustrine systems as analogs of the depositional-limnological environment of Lake Amora, the latter oscillated between wet (glacial) and more arid (interglacial) conditions, represented by sequences of primary evaporites (aragonite and gypsum that require enhanced supply of freshwater to the lakes) and clastic sediments, respectively. The lake evolved from a stage of rapid shifts between high and low-stand conditions during ∼740 to 550 ka to a sabkha-like environment that existed (at the AC site) between 550 and 420 ka. This stage was terminated by a dry spell represented by massive halite deposition at 420 ka (MIS12-11). During MIS10-6 the lake fluctuated between lower and higher stands reaching its highest stand conditions at the late glacial MIS6, after which a significant lake level decline corresponds to the transition to the last interglacial (MIS5) low-stand lake, represented by the uppermost part of the Formation.δ18O values in the primary aragonite range between 6.0 and −1.3, shifting cyclically between glacial and interglacial intervals. The lowest δ18O values are observed during interglacial stages and may reflect short and intense humid episodes that intermittently interrupted the overall arid conditions. These humid episodes, expressed also by enhanced deposition of travertines and speleothems, seem to characterize the Negev Desert, and in contrast to the overall dominance of the Atlantic-Mediterranean system of rain patterns in the Dead Sea basin, some humid episodes during interglacials may be traced to southern sources.  相似文献   

13.
Rockfall ages in tectonically active regions provide information regarding frequency and magnitude of earthquakes. In the hyper-arid environment of the Dead Sea fault (DSF), southern Israel, rockfalls are most probably triggered by earthquakes. We dated rockfalls along the western margin of the DSF using terrestrial cosmogenic nuclides (TCN). At each rockfall site, samples were collected from simultaneously exposed conjugate boulders and cliff surfaces. Such conjugate samples initially had identical pre-fall (“inherited”) TCN concentrations. After boulder detachment, these surfaces were dosed by different production rates due to differences in post-fall shielding and geometry. However, in our study area, pre-rockfall inheritance and post-rockfall production rates of TCN cannot be evaluated. Therefore, we developed a numerical approach and demonstrated a way to overcome the above-mentioned problems. This approach can be applied in other settings where rockfalls cannot be dated by simple exposure dating. Results suggest rockfall ages between 3.6 ± 0.8 and 4.7 ± 0.7 ka. OSL ages of sediment accumulated behind the boulders range between 0.6 ± 0.1 and 3.4 ± 1.4 ka and support the TCN results. Our ages agree with dated earthquakes determined in paleoseismic studies along the entire length of the DSF and support the observation of intensive earthquake activity around 4–5 ka.  相似文献   

14.
We present textural and thickness data on loess from 125 upland sites in west-central Wisconsin, which confirm that most of this loess was derived from the sandy outwash surfaces of the Chippewa River and its tributaries, which drained the Chippewa Lobe of the Laurentide front during the Wisconsin glaciation (MIS 2). On bedrock uplands southeast of the widest outwash surfaces in the Chippewa River valley, this loess attains thicknesses > 5 m. OSL ages on this loess constrain the advance of the Laurentide ice from the Lake Superior basin and into west-central Wisconsin, at which time its meltwater started flowing down the Chippewa drainage. The oldest MAR OSL age, 23.8 ka, from basal loess on bedrock, agrees with the established, but otherwise weakly constrained, regional glacial chronology. Basal ages from four other sites range from 13.2 to 18.5 ka, pointing to the likelihood that these sites remained geomorphically unstable and did not accumulate loess until considerably later in the loess depositional interval. Other OSL ages from this loess, taken higher in the stratigraphic column but below the depth of pedoturbation, range to nearly 13 ka, suggesting that the Chippewa River valley may have remained a loess source for several millennia.  相似文献   

15.
Expansion or shrinkage of closed lakes is a natural response to fluctuations in precipitation and evaporation, linked closely to changes in strength or position of atmospheric circulation. In Tibet, there are many such lakes with paleo-shorelines that can be used for reconstructions of climate history. Despite the fact that many paleo-shorelines are well preserved in Tibet, dating them has been seriously hindered by various difficulties. Here we present the first optical dating chronology for a series of paleo-shorelines in Zhari Namco, the third-largest inland lake in central Tibet. Our results indicate that the lake level has dropped 128 m over the past 8.2 ka. Younger shorelines are found at lower altitudes, indicating that the shorelines follow a geomorphic-chronological order and a broadly continuous trend of stepwise shrinkage. The surface area of Zhari Namco has shrunk in size from 4605 km2 at 8.2 ka ago to 996 km2 at present; 300 km3 of water has been lost from this lake. Such a loss in water implies a significant reduction in precipitation over the past 8.2 ka, a likely result of a weakening Asian monsoon. Following the decreasing precipitation since the early Holocene, this area has become increasingly arid.  相似文献   

16.
40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38 ± 7 ka (Cinder Butte; 1.65% K2O), 46 ± 7 ka (Sugarloaf Peak; 1.85% K2O), 67 ± 4 ka (Little Potato Butte; 1.42% K2O) and 77 ± 11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26 ± 6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26 ± 18, 30 ± 20 and 24 ± 6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24 ± 6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.  相似文献   

17.
The Provo shoreline of Lake Bonneville formed following the Bonneville flood, and, based on previous dating, was formed during a period of overflow from about 17.5 to 15.0 cal. ka. In many places the Provo shoreline consists of a pair of distinct shorelines, one ~3 m higher than the other. We present data from two cuts through double beaches to show that the upper beach is younger and represents sedimentation after a lake‐level rise. In addition, the lower beach deposits are internally stratified by beds that suggest three more lake‐level rises during its development. The Provo beach complex thus appears to have been built during rising lake levels, which can be explained by rises in the overflow threshold by sequential landslide deposition. Evaluation of beach altitudes demonstrates that the two beach crests throughout the Bonneville basin experienced equivalent rebound from removal of the lake load, and therefore they formed after the rebound associated with the Bonneville flood occurred in early Provo time. However, radiocarbon ages on gastropods collected within the beach deposits suggest both that the sequence of five beach deposits formed from c.18.1 to c. 17.0 cal. ka, and that the Bonneville flood occurred before 18 cal. ka. These ages are discordant with previous dates on shells within offshore sands, and raise questions about the validity of radiocarbon ages for shells in Lake Bonneville as well as about the age of the Bonneville flood and Provo shoreline. The timing for maximum Provo lake depths and its association with climate stages during deglaciation remain unresolved.  相似文献   

18.
This article investigates changing lake levels in the late Pleistocene eastern Great Lakes in order to gain insights into the Early Palaeo‐Indian occupations. Significant new information bearing on lake level history is provided, notably the first well‐documented deposits of a high water level above modern in the ca. 11,000–10,300 B.P. period in the southern Lake Huron basin. The lake level information, along with paleoenvironmental and site data, reinforces site age estimates to the 11th millennium B.P.; suggests significant numbers of sites have been inundated by rising water levels; provides specific information on the setting of archaeological sites such as placing the Parkhill site adjacent to a large lake estuary; indicates reasons for the attractiveness of shorelines to Palaeo‐Indians including persistence of more open areas conducive to higher game productivity; and points to ideal areas for future archaeological site survey, particularly in the Lake Erie drainage. © 2000 John Wiley & Sons, Inc.  相似文献   

19.
The single most prominent lake associated with the retreat phase of the last British–Irish Ice Sheet (BIIS) was Proglacial Lake Humber. The present research elucidates a revised regional history of Proglacial Lake Humber from its maximum elevation to its demise using a combination of landscape mapping and luminescence dating. The results of mapping multiple Lake Humber strandlines are now best described by an eight‐stage recessional model. Erosional highstands of the lake can be shown to post‐date the BIIS advance that deposited the Skipsea Till at around 17 ka whereas new OSL ages show that Lake Humber was nearing its demise by 15.5±0.8 ka, indicating a possible short‐lived lake. Multiple lake level stands are attributed to the switching of lake outlets from the Lincolnshire Gap to the Humber Gap and to oscillations of the BIIS blocking the latter on more than one occasion and subsequently at a lower elevation with till. The horizontal or near‐horizontal shorelines confirm that isostatic adjustment did not occur during the demise of Lake Humber, indicating that BIIS advances in the North Sea region and Vale of York were not only dynamic but of short duration.  相似文献   

20.
Lake Rotorua partially occupies a nearly circular 20 km diameter volcano-tectonic depression formed at c. 240 ka by eruption of the voluminous Mamaku Ignimbrite. Three distinct lacustrine littoral terraces, defined on the basis of contrasting geomorphology and field relations, and separated by tephrostratigraphically dateable unconformities and basin-floor disconformities, fringe much of the lake basin. They are here correlated with former high-stands of the lake which resulted from the blockage and re-establishment of a number of alternative outlets due to tectonic activity and volcanism at both the host and adjacent volcanic centres. The unconformities allow division of the deposits into three allostratigraphic units, each of which is then characterised by elevation and sediment provenance. The < 240 ka, post-Mamaku alloformation comprises the highest terrace (up to 415 mASL), and represents the high-stand of an intracaldera lake accumulated in the newly created basin after the eruption of the Mamaku Ignimbrite. Considerable uncertainty surrounds the initial direction of overflow from this level, but the lake may have drained southwards for a period through the Hemo Gorge, through the Ngakuru Graben/Kapenga Caldera area and into the Waikato River catchment. The second alloformation, consisting of volcaniclastic sediments forming shoreline and littoral terraces at c. 380 m elevation developed after the eruption of the 60 ka Rotoiti/Earthquake Flat pyroclastic flows from the neighbouring Okataina Volcanic Centre blocked northern and southern routes out of the lake basin. A northeasterly outlet subsequently became established at a lower level through tectonic subsidence of the Tikitere Graben, creating a drainage path into the Haroharo caldera from where it flowed into the Bay of Plenty via the Kawerau Canyon. The post-36 ka Hauparu alloformation forms the third shoreline terrace at elevations up to 349 mASL. It is the product of a temporary high-stand from blockage of the Tikitere Graben drainage path by pyroclastic debris from the voluminous 36 ka Hauparu eruption. Subsequently, episodic growth of the Haroharo resurgent dome complex between 25 and 9 ka in the adjacent Okataina Volcanic Centre forced Lake Rotorua to rise above its post-Hauparu lowstand level to an elevation where it could overtop a drainage divide on the northern rim of Lake Rotoiti and gain access to the catchment of the Kaituna River, hence establishing the current outlet channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号