首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Reversed Na-K exchange data between mica and a 2 molal aqueous(Na,K)Cl fluid (Flux & Chatterjee, 1986) have been employedto model the thermodynamic mixing behaviour of muscovite-paragonitecrystalline solutions on the basis of the Redlich-Kister equation.For these binary micas, Gexm may be expressed as where A=11222+1.389 T+0.2359 P, B=–1134+6.806 T–0.0840 P, and C=–7305+9.043 T, with T in K, P in b, Gexm, A, B, and C in joules/mol. Gmex is well constrained between 450 and 620?C, and may be extrapolatedbeyond that range with caution. The calculated solvi are skewedtoward the paragonite end member. In the range up to 15 kb,the critical temperature, Tc and the critical composition, Xcmay be expressed as a function of P by the relations: and with P indicated in bars. Calculated phase relations of muscovite-paragonite crystallinesolutions have been depicted in terms of the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O.These data may be applied to appropriate assemblages involvingmica, alkali feldspar, an Al2 polymorph, and quartz to estimateP, T and aH2O conditions of their equilibration. In principle,the muscovite limb of the solvus may be used to obtain geothermometricdata for coexisting muscovite-paragonite pairs, provided theequilibrium pressure is independently known. However, such applicationmust be restricted for the present to micas on the ideal muscovite-paragonitejoin. Mica-alkali feldspar-Al2SiO5-quartz or mica-plagioclase-Al2SiO5-quartzassemblages may be used to deduce aH2O in the coexisting fluid,if P, and T of equilibrium are independently known. Examplesof such geological applications are given.  相似文献   

2.
Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar   总被引:80,自引:20,他引:60  
We performed vapor-absent melting and crystallization experimentson two bulk compositions that model metamorphic rocks containinga single hydrous phase: a biotite gneiss [37% bio (mg-number55), 34% qtz, 27% plg (An38), 2% ilm] and a quartz amphibolite[54% hbl (mg-number 60), 24% qtz, 20% plg (An38), 2% ilm]. Experimentswere performed at 3 and 5 kbar in internally heated pressurevessels (IHPV), and at 7, 10, 125 and 15 kbar in piston cylinderapparatus (PC), from the vapor-absent solidi to (at least) thetemperature at which the hydrous mineral disappeared. Dehydration-meltingbegins at similar temperatures in both bulk compositions, rangingfrom T850C at P = 3 kbar T930C at P = 15 kbar. The hydrousmineral disappears 50C above the solidus in both systems, exceptin IHPV experiments at f(O2) above Ni–NiO, in which biotitestability extends up to atleast 80C above the solidus. At theT at which the hydrous minerals disappear the biotite gneissproduces 2–3 times more melt than the quartz amphibolite(50–60 wt% vs 20–30 wt%). In both systems, variationsin melt productivity with P are controlled by three competingfactors: (1) the positive d P/dT slopes of the solidi, (2) decreasingH2O activity with increasing P at constant H2O content, and(3) Na2O activity, which increases with P concomitantly withbreakdown of plagioclase. Melt productivities at T = 920–950Care maximized at intermediate pressures (7 kbar). The biotitegneiss produces strongly peraluminous granitic melts (SiO2>70wt%) and residual assemblages of quartz norite (P>125 kbar)or garnet pyroxenite (P>125 kbar). The quartz amphiboliteproduces strongly peraluminous granodioritic melts (SiO2>70wt%) that coexist with clinopyroxene + orthopyroxene + plagioclase+ quartz at P>10 kbar)garnet. The results of coupled meltingand crystallization experiments on the quartz amphibolite suggestthat strongly peraluminous granitoid rocks (e.g. cordierite-bearingand two-mica granites) can be derived from melting of Al-poorprotoliths. KEY WORDS: dehydration-melting; biotite gneiss; amphibolite; felsic magmas *Corresponding author  相似文献   

3.
Experimental phase equilibrium data on compositions of coexistingpyroxenes in the quadrilateral enstatite-diopside-ferrosilite-hedenbergitehave been used to model pyroxene solid solutions and to formulatepyroxene geothermometers. Each pyroxene is treated as a solidsolution of four quad-components using the Kohler formulation where Gij* is the excess free energy of mixing in a binary solutioncalculated with binary mole fractions (e.g. Xio = Xi/(Xi+Xj))and Xi is the mole fraction in a multicomponent solution. Thefit to the experimental data is achieved by minimizing the totalGibbs free energy of the assemblage. The following set of thermochemicaldata and simple mixture parameters (Wij) are found to be bestsuited. Standard (T = 298?15 K) enthalpy and entropy of formationfrom elements for fictive orthohedenbergite are –1416?8kJ and 84?88 J K–1 mol –1 respectively. The heatcapacity is given by 114?67+17?09E-3T–31?40E5T–2.The Wij data are: Opx: W12 = W21 = 25 W13 = (13?1–0-015T),W31 = (3?37–0?005T), W23 = 20, W32 = 16, W24 = 5, W42= 7, W34 = 15, W43 = 15; Cpx: W12 = (25?484+0?0812P), W21 =(31?216–0?0061P),W31 = W13 = 0W14 = (93?3–0?045T), W41 = (–20?0+0?028T),W23 = 24, W32 = 15, W24 = 12, W42 = 12, W34 = (16?941+0?00592P),W43 = (20?697–0?00235P). Coexisting pyroxene compositionshave been computed in the temperature range of 700 to 1400?C. Two geothermometers have been constructed, one based on atomicfraction of iron (Fe/(Fe + Mg)) in orthopyroxene and the Fe-Mgdistribution coefficient and the other, based on wollastonitecontent of clinopyroxene. The two scales yield different temperatureswhen applied to the same rock. In igneous pyroxenes, the Catransfer ceased at 150 to 200?C above the closure temperatureof the Fe-Mg ion-exchange. In metamorphic rocks an oppositeeffect seems to have prevailed.  相似文献   

4.
Kornerupine and associated minerals in 31 samples of high-graderocks relatively rich in Al and Mg were analysed by wet chemistry,ion microprobe mass analyser, electron microprobe and X-raypowder diffraction. For 11 samples of kornerupine and threesamples of biotite (F only) analysed by both wet chemical andion microprobe methods, the best agreement was obtained forB2O3, whereas the ion microprobe Li2O values were systematicallysomewhat higher than the wet chemical values. The wet chemicalmethods give Li2O=0–0?19 wt.%; BeO=0–0?032 wt.%;B2O3=0–4?01 wt.%; and F=0?07–0?77 wt.% in kornerupine,whereas ion microprobe analyses on other kornerupines give valuesup to 0?35 wt.% Li2O, O066 wt.% BeO, and 4?72 wt.% B2O3. Thesum B+Al+Fe3++Cr is close to 6?9 atoms per 22 (O, OH, F) or21?5 (O) in kornerupine. In general, Li/Fe ratios decrease as follows: kornerupine ?sapphirinebiotite> Crd (Na<0?03 per 18 oxygens)>tourmaline, garnet,orthopyroxene. However, for cordierite with Na>004, Li/Fedecreases as follows: cordierite>kornerupine. Sapphirineand sillimanite are the only associated minerals to incorporatesignificant boron (0?1–0?85 wt.% B2O3) and then only whenthe single site for B in kornerupine is approaching capacity.Sillimanite B2O3 contents increase regularly with kornerupineF. Fractionation of fluorine increases as follows: kornerupine<biotite<tourmaline,and Kkrn-BtD=(F/OH)Krn/(F/(OH)Bt (assuming ideal anion composition)increases with biotite Ti. Kornerupine B2O3 content is a measureof B2O3 activity in associated metamorphic fluid, whereas sillimaniteB2O3 content increases with temperature, exceeding 0?4 wt.%whenT=900?C at very low water activities. New data on 11 kornerupines and literature data indicate thatthe unit cell parameters a, c, and V decrease with increasingB content and b, c, and V increase with increasing Fe3+ content.In Fe3+-poor kornerupines, b increases with Mg and with (Mg+ Fe2+) but the effect of Mg on b via the substitution VIMg+IVSi=VIAl+IVAloverwhelms the effect of Fe2+=Mg substitution.  相似文献   

5.
We have determined the Fe-Mg fractionation between coexistinggarnet and orthopyroxene at 20–45 kb, 975–1400?C,and the effect of iron on alumina solubility in orthopyroxeneat 25 kb, 1200?C, and 20 kb, 975?C in the FMAS system. The equilibriumcompositions were constrained by experiments with crystallinestarting mixtures of garnet and orthopyroxene of known initialcompositions in graphite capsules. All iron was assumed to beFe2+. A mixture of PbO with about 55 mol per cent PbF2 provedvery effective as a flux. The experimental results do not suggest any significant dependenceof KD on Fe/Mg ratio at T 1000?C. The lnKD vs. l/T data havebeen treated in terms of both linear and non-linear thermodynamicfunctional forms, and combined with the garnet mixing modelof Ganguly & Saxena (1984) to develop geothermometric expressionsrelating temperature to KD and Ca and Mn concentrations in garnet. The effect of Fe is similar to that of Ca and Cr3+ in reducingthe alumina solubility in orthopyroxene in equilibrium withgarnet relative to that in the MAS system. Thus, the directapplication of the alumina solubility data in the MAS systemto natural assemblages could lead to significant overestimationof pressure, probably by about 5 kb for the relatively commongarnetlherzolites with about 25 mol per cent Ca+Fe2+ in garnetand about 1 wt. per cent Al2O3 in orthopyroxene.  相似文献   

6.
BREY  G. P.; K?HLER  T. 《Journal of Petrology》1990,31(6):1353-1378
On the basis of experiments presented in Part I of this series,most of the published thermobarometers relevant to four-phaseperidotites are tested here for their ability to reproduce experimentalconditions. They were rejected if any systematic discrepancyin either pressure or temperature was discernible. This testcautions against the use of all published versions of thermometersbasad on the compositions of coexisting ortho- and clinopyroxenesand the use of existing barometers based on the Al content oforthopyroxene axxisting with garnet. Therefore, we formulatednew versions of the two-pyroxene thermometer and the Al-in-opxbarometer: with and is in degress Kelvin and P is in kilobars. Our new barometer is of the form (C1–C3) and site occupancies are given in the text. Temperatures may also be calculated from the Ca content of opxalone: This thermometer can be applied both to the CMS and the naturalsystem experiments, which may indicate that Fe and Na have counter-balancingeffects on the Ca content of opx. The partitioning of Na between opx and cpx can also serve asa useful thermometer, and was calibrated from natural rock data: where T is in degrees Kelvin, P is in kilobars, and DNa=Naopx/Nacpx. The following three published thermobarometers based on furtherexchange reactions are capable of reprducing experimental conditions:
  1. exchangeof Ca between olivine and clinopyroxene as a barometer(PKB),
  2. exchange of Fe and Mg between garnet and clinopyroxene asathermometer (TKrogh),
  3. exchange of Fe and Mg between garnetand olivine as a thermometer(TO'Neiii).
Our tests also show that the most accurate pressure and temperatureestimates arc obtained from the following combinations of thermometersand barometers:
  1. TBKN+PBKN,
  2. TBKN+PKB,
  3. TKrogh+PBKN,
  4. TO'Ne$$$ll+PBKN.
  相似文献   

7.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

8.
Triclinic KFeSi3O8, iron-microcline, has been synthesized fromoxide mixes and by complete conversion of monoclinic KFeSi3O8,iron-sanidine. Iron-microcline is triclinic, C, a=8?68?0?01?, b=13?10?0?01, c=7?34?0?01, =90? 45'?10', ß=116?03'?10', =86?14'?10'. The optical properties (Na light) are:=1?585?0?002, ß=1?596?0?002, =1?605?0?002, 2V=85?(calc.), Xb, Z c=20??5?. A reversible phase transition betweentriclinic and monoclinic KFeSi3O8 occurs at 704??6? C at 2000bars total pressure. Iron-microcline is the low-temperaturepolymorph; no intermediate polymorphs were observed in eitherhydrothermal or dry heating experiments.  相似文献   

9.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

10.
HOVIS  GUY L. 《Journal of Petrology》1988,29(4):731-763
In order to investigate the thermodynamic properties of alkalifeldspars, three new feldspar ion-exchange series have beensynthesized, two based on monoclinic parent materials havingintermediate degrees of Al—Si order, the other on Amelialow albite. Acid solution calorimetric measurements have beencarried out in 20?1% HF at 50?C under isoperibolic conditionson 30 members of the three series, and compared with revisedvalues for a previously reported sanidine—analbite series.Molar volumes have been determined for all feldspars, and foran additional series based on Eifel sanidine. Enthalpies of K—Na mixing (Aex) calculated from the 50?Cheats of solution are dependent on Al—Si distributionfor both topochemically monoclinic and triclinic alkali feldspars,and in general can be expressed as where NOr and NAb are mole fractions of KAlSi3O8 and NaAlSi3O8,respectively, and Z is an ordering parameter defined as twicethe difference in the mole fraction of Al in the T1 vs the T2tetrahedral sites. Aex values for all but the most disorderedseries are maximized toward sodic compositions, and increaseboth in magnitude and asymmetry as ordering increases. For topochemically monoclinic alkali feldspar series, volumesof K—Na mixing(Vex) are asymmetric with NOr, but withinthe precision of present data do not depend on Al—Si distribution: Microcline-low albite feldspars appear to have volumes of mixingwith the opposite asymmetry, but expressions of for these differ somewhat among various investigators. Since no single thermodynamic mixing property is markedly asymmetricwith respect to composition, the excess Gibbs energies impliedfrom solvus data for alkali feldspars, and maximized at sodiccompositions, are apparently the result of additive effectsof subtle asymmetries in the volumes, enthalpies, and entropiesof K—Na mixing in these minerals. The thermodynamic properties of an alkali feldspar at any compositionare significantly affected by the distribution of Al and Sibetween T1 and T2 tetrahedral sites. The enthalpy of formationat 50?C of a monoclinic potassium feldspar with perfect order(Z=1) differs by 2?19 kcal/mol from one with a completely randomAl—Si distribution (Z=0), while a value of 2?86 kcal/molapplies to analagous sodium end members. ConverselyY-ordering(between T1O andT1m sites) seems to have little or no effecton the enthalpy of formation of either end member, evidencedby the fact that most of the enthalpy differences for the lowmicrocline to sanidine and corresponding low albite to analbitetransitions (1?73 and 2?79 kcal/mol, respectively) can be attributedto Al—Si exchanges between T1 and T2 sites. Observed enthalpydifferences in alkali feldspars are probably related to strainat domain boundaries, whether the domains are extremely small,or somewhat larger as in modulated structures. Neither Z-nor Y-ordering has a substantial effect on the molarvolumes of alkali feldspars.  相似文献   

11.
At Kabbaldurga, infiltration of carbonic fluids along a systemof ductile shears and foliation planes has led to partial transformationof Archaean grey biotite–hornblende gneiss to coarse-grainedmassive charnockite at about 2.5 b.y. ago. The dehydration ofthe gneiss assemblage was induced by a marked metasomatic changeof the reacting system from granodioritic to granitic, and obviouslytook place under conditions of an open system at 700–750?C and 5–7 kb. Extensive replacement of plagioclase (An16–30)by K-feldspar through Na, Ca–K exchange reactions withthe ascending carbonic fluids led to strong enrichment in K,Rb, Ba, and SiO2, and to a depletion in Ca. Progressive dissolutionof hornblende, biotite, magnetite, and the accessory mineralsapatite and zircon resulted in a marked depletion in Fe, Mg,Ti, Zn, V, P, and Zr. Most important is the recognition of REEmobility: with advancing charnockitization, the moderately fractionatedREE distribution patterns of the grey gneisses (LaN270; LaN/YbN= 5–20; EuN27; Eu/Eu* = 0.6–0.3) give way to stronglyfractionated REE patterns with a positive Eu-anomaly (LaN200;LaN/YbN = 20–80; EuN22; Eu/Eu* = 0.6–1.8). The systematicdepletion especially in the HREE is due to the progressive dissolutionof zircon, apatite (and monazite), which strongly concentratethe REE. Stable isotope data (18O of 6.9–8.0 per mille for gneissesand charnockites; 13C of –8.5 and –6.5 per millefor late carbonate) indicate a magmatogenic source for the carbonicfluids. In contrast to the currently favoured derivation ofcarbonic fluids by decarbonation of the upper mantle or degassingof underplated basaltic intrusions, it is discussed here thatabundant fluid inclusions in lower crustal charnockites providedan extensive reservoir of ‘fossil’ carbonic fluids.Shear deformation has tapped this reservoir and generated thechannel-ways for fluid ascent. Charnockitization of the Kabbaldurgatypethus appears to be a metasomatic process which is tectonicallycontrolled and restricted to the crustal level of the amphiboliteto granulite transition.  相似文献   

12.
The Aravalli–Delhi Mobile Belt in the northwestern partof India demonstrates how granulite enclaves and their hostgneisses can be utilized to unravel multistage metamorphic historiesof orogenic belts, using three suites of metamorphic rocks:(1) an enclave of pelitic migmatite gneiss–leptynite gneiss;(2) metamorphosed megacrystic granitoids, intrusive into theenclave; (3) host tonalite–trondhjemite–granodiorite(TTG) gneisses associated with an interlayered sequence of garnetiferousmetabasite and psammo-pelitic schist, locally migmatitic. Basedon integrated structural, petrographic, mineral compositional,geothermobarometric studies and P–T pseudosection modellingin the systems NCKFMASH and NCFMASH, we record three distincttectonothermal events: an older, medium-pressure granulite-faciesmetamorphic event (M1) in the sillimanite stability field, whichis registered only in the enclave, a younger, kyanite-gradehigh-pressure granulite-facies event (M2), common to all thethree litho-associations, and a terminal amphibolite-faciesmetamorphic overprint (M3). The high-P granulite facies eventhas a clockwise P–T loop with a well-constrained prograde,peak (M2, P 12–15 kbar, T 815°C) and retrograde (M2R,6·1 kbar, T 625°C) metamorphic history. M3 is recordedparticularly in late shear zones. When collated with availablegeochronological data, the metamorphic P–T conditionsprovide the first constraint of crustal thickening in this belt,leading to the amalgamation of two crustal blocks during a collisionalorogeny of possible Early Mesoproterozoic age. M3 reactivationis inferred to be of Grenvillian age. KEY WORDS: Northwestern India; polycyclic granulite enclave; pseudosection; high-pressure metamorphism; P–T path  相似文献   

13.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

14.
We have performed time series experiments for periods rangingfrom 3 min to 44 h on the interaction of granite melt and partiallymolten basalt at 920C and 10 kbar, in the presence of 5 wt.%water. With time, the assemblage of the basalt domain changesfrom predominantly amphibole+plagioclase to clinopyroxene+garnet;the melt fraction increases from {small tilde}2•5 to 40%;and between the two domains, the melt compositions progressivelyequilibrate. Initially in each run, melts of the basalt domainhave uniform plateau concentrations for SiO2, Al2O3, CaO, MgO,and FeO because the activities of these components are regulatedby the mineral assemblage, but at advanced stages of reaction,no such control is evident. We have derived analytical expressionsto describe and simulate the diffusion profiles. The concentrationprofiles for SiO2, Al2O3, CaO, and Na2O in the granite, emanatingfrom the basalt–granite interface, have been used to estimateeffective diffusivities. The values from the shorter runs arecompared with those of the experiment of longest duration forwhich we assumed finite couples in our calculations. In thediffusion calculations for K2O the difference in melt fractionbetween the two domains is accounted for. The resulting values(in cm2/s) are: DNa2O=6 10–7, DK2O=3 10–7, DMgO=9 10–8, DCaO=(4–6) 10–8, and DSiO2 and DAl2O3=(3–0•6) 10–8. They are in reasonable agreement with values fromother studies. On the basis of our experiments we calculatethat mafic enclaves of magmatic origin should equilibrate toa large degree with their host magma in slowly cooling non-convectinggranitic plutons. Enclaves approaching complete re-equilibrationretain distinctly higher modal amounts of mafic minerals. Theydo not compositionally resemble binary magma mixtures, but aremore like host magma with accumulated crystals. We show thatthe modal differences between enclave and host are indicativeof the temperature of homogenization and that, in principle,this temperature can be deduced from equilibrium phase diagrams. * Present address: Mineralogisch-Petrologisches Institut, Universitt Gttingen, Goldschmidtstrasse 1, 3400 Gttingen, Germany  相似文献   

15.
On the pseudobinary join CaO:3MgO:Al2O3:2SiO2:xH2O–CaO:1.25MgO:2.75 Al2O3: 0.25SiO2:xH2O clintonite mixed crystals Ca(Mg1+ xAl2 – x) (Al4 – xSixO10)(OH)2 with x rangingfrom 0.6 to 1.4 occur in the temperature range 600–830?C, 2 kb fluid pressure. On the MgSirich side clintonites coexistwith chlorite, forsterite, diopside, and calcite (due to smallamounts of CO2 in the gas phase) and, at lower temperatures,also with idocrase, hydrogrossularite, and aluminous serpentine.Decomposition of clintonite over a divariant temperature rangeoccurs above 830 ?C, 2 kb; clintonite-free subsolidus assemblagescomprising three or four solid phases are formed in the temperatureranges 890 ?–1120 ?C. The subsolidus assemblages can berepresented in a polyhedron defined by the corners forsterite,diopside, melilite, spinel, anorthite, corundum, and calciumdialuminate. Above 1120 ?C partial melting occurs. The upper thermal stability limits of three selected compositionshave been reversed in the P-T range 0.5–20 kb and 730–1050 ?C, respectively. Below some 4 kb breakdown is dueto the divariant reactions: (1)Ca(Mg2.25Al0.75)(Al2.75)(Si1.25O10)(OH)2 spinel+diopsidess+forsterite+clintonitess+vapor, (2)Ca(Mg2Al)(Al3SiO10)(OH)2 spinelx002B;melilitess+anorthite+clintonitess+vapor, (3)Ca(Mg1.75Al1.25)(Al3.25)(Si0.75O10)(OH)2 spinel+melilitess+corundum+clintonitess+vapor, At the terminations of the divariant temperature ranges (1)melilitess, (2) diopsidess, and (3) anorthite enter those assemblagesand clintonitess disappears completely. The reactions can berepresented by the following equations (1)log,H2O = 10.2879–8113/T+0.0856(P–1)/T, (2)log = 9.5852–7325/T+0.0794(P–1)/T, (3)log = 7.8358–5250/T+0.077(P–1)/T, with P expressed in bars and Tin ?K. Above 4 kb the upper thermalstability limit of clintonite is defined by incongruent melting,with grossularite participating at pressures above 9 kb. Thesecurves exhibit a very steep, probably even negative slope inthe P-T diagram. There is a close correspondence between natural clintonite-bearingassemblages and thosefound experimentally. The rarity of clintonitein nature is not due to special conditions of pressure and temperaturebut rather due to special bulk compositions of the rocks.  相似文献   

16.
Anhydrite solubility in H2O–NaCl solutions was measuredat 6–14 kbar, 600–800°C and NaCl mole fractions(XNaCl) of 0–0·3 in piston–cylinder apparatus.Solubilities were determined by weight changes of natural anhydritein perforated Pt envelopes confined with fluid in larger Ptcapsules. In initially pure H2O at 10 kbar and 800°C, CaSO4concentration is low (0·03 molal), though much largerthan at the same temperature and 1 kbar. Hematite-buffered experimentsshowed slightly lower solubilities than unbuffered runs. CaSO4solubility increases enormously with NaCl activity: at 800°Cand 10 kbar and XNaCl of 0·3, CaSO4 molality is 200 timeshigher than with pure H2O. Whereas CaSO4 solubility in pureH2O decreases with rising T at low T and P, the high-P resultsshow that anhydrite solubility increases with T at constantP at all XNaCl investigated. The effects of salinity and temperatureare so great at 10 kbar that critical mixing between sulfate-richhydrosaline melts and aqueous salt solutions is probable at900°C at XNaCl 0·3. Recent experimental evidencethat volatile-laden magmas crystallizing in the deep crust mayevolve concentrated salt solutions could, in light of the presentwork, have important implications regarding such diverse processesas Mount Pinatubo-type S-rich volcanism, high-f O2 regionalmetamorphism, and emplacement of porphyry Cu–Mo ore bodies,where anhydrite–hematite alteration and fluid inclusionsreveal the action of very oxidized saline solutions rich insulfur. KEY WORDS: anhydrite; sulfur; solubility; metamorphic brines; granulites  相似文献   

17.
The spinel–garnet transition in Cr/Al-enriched peridotiticbulk compositions is known from experimental investigationsto occur at 20–70 kbar, within the pressure range sampledby kimberlites. We show that the Cr2O3–CaO compositionsof concentrate garnets from kimberlite have maximum Cr/Ca arrayscharacterized by Cr2O3/CaO 0·96–0·81, andinterpret the arrays as primary evidence of chromite–garnetcoexistence in Cr-rich harzburgitic or lherzolitic bulk compositionsderived from depth within the lithosphere. Under Cr-saturatedconditions on a known geotherm, each Cr/Ca array implicitlydelineates an isobar inside a garnet Cr2O3–CaO diagram.This simplification invites a graphical approach to calibratean empirical Cr/Ca-in-pyrope barometer. Carbonaceous chromite–garnetharzburgite xenoliths from the Roberts Victor kimberlite tightlybracket a graphite–diamond constraint (GDC) located atCr2O3 = 0·94CaO + 5·0 (wt %), representing a pivotalcalibration corresponding to 43 kbar on a 38 mW/m2 conductivegeotherm. Additional calibration points are established at 14,17·4 and 59·1 kbar by judiciously projecting garnetcompositions from simple-system experiments onto the same geotherm.The garnet Cr/Ca barometer is then simply formulated as follows(in wt %):
if Cr2O3 0·94CaO + 5, then P38 (kbar) = 26·9+ 3·22Cr2O3 – 3·03CaO, or
if Cr2O3 <0·94CaO + 5, then P38 (kbar) = 9·2+ 36[(Cr2O3+ 1·6)/(CaO + 7·02)].
A small correction to P38 values, applicable for 35–48mW/m2 conductive geotherms, is derived empirically by requiringconventional thermobarometry results and garnet concentratecompositions to be consistent with the presence of diamondsin the Kyle Lake kimberlite and their absence in the Zero kimberlite.We discuss application of the P38 barometer to estimate (1)real pressures in the special case where chromite–garnetcoexistence is known, (2) minimum pressures in the general casewhere Cr saturation is unknown, and (3) the maximum depth ofdepleted lithospheres, particularly those underlying Archaeancratons. A comparison with the PCr barometer of Ryan et al.(1996, Journal of Geophysical Research 101, 5611–5625)shows agreement with P38 at 55 ± 2 kbar, and 6–12%higher PCr values at lower P38. Because the PCr formulationsystematically overestimates the 43 kbar value of the GDC by2–6 kbar, we conclude that the empirical Cr/Ca-in-garnetbarometer is preferred for all situations where conductive geothermsintersect the graphite–diamond equilibrium. KEY WORDS: Cr-pyrope; chromite; P38 barometer; mantle petrology; lithosphere thickness  相似文献   

18.
Manganiferous chemical sediments of Neoproterozoic age in Namibiawere subjected to high-T–low-P metamorphism during theDamara Orogeny and display unique phase assemblages. The manganeseformations are embedded in iron formations and siliciclasticcountry rocks. This sequence is petrographically subdividedinto restricted lithotypes which bear specific mineral assemblagesand compositions depending on their protolith type. In puremanganese ores the critical assemblage braunite + haematite+ jacobsite + rhodonite is frequently developed, whereas interlayeredimpure silicate ores bear various proportions of spessartine,Mn3+-bearing andradite–calderite and andradite garnets,rhodonite, manganoan aegirine–augite, aegirine, Ba–K–Na-feldspars,barite and rare kinoshitalite. Petrological constraints derivedfrom country rock lithologies indicate peak metamorphic conditionsof 660–700C at estimated pressures of 35–45 kbar.Numerous Ba-rich pegmatitic veins restricted to the ore horizonstestify to the production of partial melts from siliciclasticstrata within the manganese formations. They are correlatedwith peak pressure conditions between 5 and 6 kbar, accompanyingthe main deformation event and pre-dating the thermal peak.An early H2O-rich generation of fluid inclusions is interpretedas a manifestation of prograde dehydration reactions in theore horizons. This caused hydraulic fracturing of the ores and,subsequently, triggered the formation of partial melts whichintruded the fracture planes in situ. Peak metamorphism thenoccurred under strainfree conditions allowing equilibrium recrystallizationof all minerals to develop. Phase relationships of manganeseoxides and silicates modelled in the system Mn–Fe–Si–Oreveal variable chemical compositions of braunites, jacobsitesand haematites depending on their paragenesis. They indicatevery restricted oxygen reservoirs within specific strata ofthe manganese ores and eliminate a prominent mass exchange evenon a small scale. This is supported by 18O analyses of silicateassemblages which further exclude mass transfer between manganeseores and country rocks, and indicate preservation of the exchangeequilibria during cooling. The uplift path of the sequence canbe constrained using different decrepitation patterns of H2Ofluid inclusions and a syn-to late-metamorphic CO2-rich fluidinclusion population, which indicate high geothermal gradientsof 70C/km and more. The P–T–D evolution of thishigh-T–low-P metamorphic belt conforms with the palaeotectonicsetting of the study area at the southernmost part of the CongoCraton, representing the continental buttress colliding withthe Kalahari Craton during the Pan-African orogeny. KEY WORDS: manganiferous sediments; Damara Orogeny; Namibia; metamorphism; oxygen isotopes; fluid inclusions *Corresponding author. Present address Institut fr Geowissenschaften und Lithosphrenforschung, Senckenbergstrasse 3, D-35390 Giessen, Germany  相似文献   

19.
Thermodynamic calculations based on addition of mass balanceequations to the Gibbs Method (Spear, 1986) are used to modelthe cordierite-producing reaction in pelitic gneiss from theMcCullough Range, southern Nevada. Calculations which treatthe model paragenesis as a system open to transfer of H2O areconsistent with textural relations. Results indicate that cordieritegrew by the continuous net-transfer reaction: 0?76 BIO+1?72 SILL+3? 55 QTZ+0?27 PLG+0?005 GRT +0?06Al2R2+–1Si–1[BIO]1?02 KSP+0?76 H2O +0?30 FeMg–1[CRD]+0?15FeMg–1[BIO]+0?0005 FeMg–1[GRT] +0?005 CaNaAl–1Si–1[PLG] with decreasing P, decreasing T, and increasing aH2O The steepretrograde dP/dT path for these low-pressure granulites contrastswith isobaric cooling paths typical of higher pressure granulites,and suggests uplift and erosion were active during Proterozoicgranulite-grade metamorphism in this area.  相似文献   

20.
The inferred crystallization history of the troctolitic LowerZone of the Kiglapait Intrusion in Labrador is tested by meltingmineral mixtures from the intrusion, made to yield the observedcrystal compositions on the cotectic trace of liquid, plagioclase,and olivine. Melting experiments were made in a piston-cylinderapparatus, using graphite capsules at 5 kbar. Lower Zone assemblagescrystallized from 1245°C, 5% normative augite in the liquid,to 1203°C, 24% normative augite in the liquid at saturationwith augite crystals. This transit is consistent with modaldata and the large volume of the Lower Zone. The 1245°Ccotectic composition matches the average Inner Border Zone composition.Quenched troctolitic liquid from the Upper Border Zone, andothers from nearby Newark Island, plot on or near our experimentalcotectic, supporting a common fractionation history. Olivine–plagioclaseintergrowths from cotectic troctolitic melt show mosaic texturesreflecting the differing barriers to nucleation of these twophases. The linear partitioning of XAb in plagioclase–meltyields an intercept constant KD = 0·524 for these maficmelts. Observed subsolidus exchange of Ca between plagioclaseand olivine elucidates the loss of Ca from plutonic olivines.The bulk composition of the intrusion is revised downward inFo and An. KEY WORDS: experimental; olivine; plagioclase; Kiglapait; partitioningAbbreviations: AP, MT, IL, OR, AB, AN, DI, HY, OL, FO, NE, Q, FSP, AUG: (Oxygen) Normative components; Ap, Aug, Ilm, Ol, Pl: Phases; Ab, An, Di, Fa, Fo, Or, Wo: Phase components; also ternary endmembers; BSE: Back-scattered electron; CaTs: Calcium Tschermak's component, CaAlAlSiO6; D: Partition coefficient; f: Fugacity; FL: Fraction of the system present as liquid = 1 – (PCS/100); FMQ: Fayalite = magnetite + quartz buffer; IBZ: Inner Border Zone; IW: Iron = wüstite buffer; kbar: kilobar, 108 pascal; KD: Exchange coefficient; KI: Kiglapait Intrusion; L: Liquid phase; LLD: Liquid line of descent; Ma: Mega-annum, age; Myr: Mega-year, time; OLHY: Normative OL + HY; OLRAT: The ratio OLHY/(OLHY + AUG); P: Pressure; P: Phosphorus; PCS: Percent solidified (volume); SMAR: South Margin average composition; T: Temperature, °C; UBZ: Upper Border Zone; WM: Wüstite = magnetite buffer; Wo: Wollastonite component of pyroxene; X: Mole fraction; XMg: Molar ratio Mg/(Mg + Fe2+); , XMg(0): Initial XMg before MT is formed in the norm calculation; X: Coordinate, horizontal axis; Y: Coordinate, vertical axis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号