首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for light non‐aqueous phase liquid (LNAPL) quantification at a field site treated by dual‐phase LNAPL removal. After the break of a pipeline, 5 ha of soil in the nature reserve Coussouls de Crau in southern France was contaminated by 5100 m3 of crude oil. Part of this oil seeped into the underlying gravel aquifer and formed a floating oil body of about 3.9 ha. The remediation consists of plume management by hydraulic groundwater barriers and LNAPL extraction in the source zone. 222Rn measurements were performed in 21 wells in and outside the source zone during 15 months. In uncontaminated groundwater, the radon activity was relatively constant and remained always >11 Bq/L. The variability of radon activity measurements in wells affected by the pump‐and‐skim system was consistent with the measurements in wells that were not impacted by the system. The mean activities in wells in the source zone were, in general, significantly lower than in wells upgradient of the source zone, owing to partitioning of 222Rn into the oil phase. The lowest activities were found in zones with high non‐aqueous phase liquid (NAPL) recovery. LNAPL saturations around each recovery well were furthermore calculated during a period of high groundwater level, using a laboratory‐determined crude oil–water partitioning coefficient of 38.5 ± 2.9. This yielded an estimated volume of residual crude oil of 309 ± 93 m3 below the capillary fringe. We find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in an aquifer treated by dual‐phase LNAPL removal, but that quantification of NAPL saturation using Rn is highly uncertain.  相似文献   

2.
水是人类生存之源,而湖荡被称为地球之“肾”,是河湖水系连接的关键缓冲节点,与人类生存和发展息息相关。长三角平原水系众多,河流纵横,天然湖泊与人工沟渠遍布,平原湖荡湖水与周边地下水的水力联系较为频繁,而地下水对湖泊水均衡贡献尚不明确,对平原湖荡地下水赋存和运移规律的认识不足。本研究以苏州吴江区元荡湖为研究对象,选取氡同位素作为湖水和地下水水力交换过程的示踪剂,建立氡箱模型,揭示元荡湖不同区段与地下水的水力联系过程和补给关系,并通过水位动态验证分析湖水—地下水交互关系。枯水期元荡湖水位和氡浓度空间分布特征指示研究区内地下水向湖水排泄,其中以湖泊西侧较为明显,地下水入流补给的氡为7.137×106 Bq/d,输入量源项占比为90%,地下水流入量为4540.801 m3/d,地下水每日流入量对元荡湖水量的贡献率为2.551%。参数敏感性分析结果表明,风速与地下水222Rn活度为特别敏感参数,取值差异较大时会导致计算误差急剧增大,改善测点布置和提高模型参数精度能有效提高模型计算结果的准确性和可靠程度。借助氡同位素示踪方法,建立湖泊氡箱模型,是研究平原湖荡内地下水补、径、排特征的有效方法。本研究在一定程度上加深了对平原湖荡区域水量均衡的认识,有助于了解平原湖荡水均衡和水循环机制,为平原湖荡水资源开发利用与环境保护提供数据支撑。  相似文献   

3.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

4.
Ground‐based handheld thermal infrared imagery was used for the detection of small‐scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1–2 cm were observed along the beach at a distance of 2–3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3–5 °C higher) and a lower electric conductivity (<10 mS/cm) in contrast to the surrounding sea water (1–2 °C, >30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small‐scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground‐based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters.  相似文献   

5.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   

6.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Nutrient fluxes from developed catchments are often a significant factor in the declining water quality and ecological functioning in estuaries. Determining the relative contributions of surface water and groundwater discharge to nutrient‐sensitive estuaries is required because these two pathways may be characterized by different nutrient concentrations and temporal variability, and may thus require different remedial actions. Quantifying the volumetric discharge of groundwater, which may occur via diffuse seepage or springs, remains a significant challenge. In this contribution, the total discharge of freshwater, including groundwater, to two small nutrient‐sensitive estuaries in Prince Edward Island (Canada) is assessed using a unique combination of airborne thermal infrared imaging, direct discharge measurements in streams and shoreline springs, and numerical simulation of groundwater flow. The results of the thermal infrared surveys indicate that groundwater discharge occurs at discrete locations (springs) along the shoreline of both estuaries, which can be attributed to the fractured sandstone bedrock aquifer. The discharge measured at a sub‐set of the springs correlates well with the area of the thermal signal attributed to each discharge location and this information was used to determine the total spring discharge to each estuary. Stream discharge is shown to be the largest volumetric contribution of freshwater to both estuaries (83% for Trout River estuary and 78% for McIntyre Creek estuary); however, groundwater discharge is significant at between 13% and 18% of the total discharge. Comparison of the results from catchment‐scale groundwater flow models and the analysis of spring discharge suggest that diffuse seepage to both estuaries comprises only about 25% of the total groundwater discharge. The methods employed in this research provide a useful framework for determining the relative volumetric contributions of surface water and groundwater to small estuaries and the findings are expected to be relevant to other fractured sandstone coastal catchments in Atlantic Canada. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Peter G. Cook 《水文研究》2013,27(25):3694-3707
Environmental tracer methods have been used to quantify groundwater discharge to rivers for the past few decades. A number of different tracers have been used in these studies, including individual ion concentrations, electrical conductivity, stable isotopes 2H and 18O, and the dissolved gases helium, chlorofluorocarbons and radon. This paper discusses the assumptions of the method, as well as its resolution and accuracy. The method will be most accurate when the tracer concentration in groundwater is very distinct from that in the river. On the basis of typical parameters, groundwater inflow rates as low as 5 mm/day can usually be estimated with electrical conductivity and ion tracers. A lower limit of resolution of approximately 2 mm/day is usually possible with radon, principally because the ratio of the river concentration to the groundwater concentration will be higher. However, hyporheic exchange can also contribute radon to the river. Where this process is significant, it is more difficult to estimate groundwater inflow from radon activities in the river, thus reducing the accuracy of the method. For CFCs, the lower limit of resolution is approximately 30 mm/day. Helium has not been widely used but can potentially be very accurate if the groundwater is old. The method assumes steady‐state conditions and so can only be applied when river flows are stable. Sampling resolution is also particularly important for dissolved gases, and uncertainty in where groundwater inflow occurs between sampling points can cause large uncertainty in inflow rates if the distance between sample locations is large. Poor mixing of solutes within the river can limit the method if the river is wide and shallow. When correctly applied, however, the environmental tracer method is able to provide robust estimates of groundwater discharge at a scale and accuracy that is not possible with most other methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
丁风和  查斯  赵铁锁  王鑫 《山西地震》2007,(1):20-22,44
2006年8月对清水河水氡进行异常核实发现,排除水点采样系统的变化和仪器标定的原因,2000年以来,该井水氡测值具有比较明显的“夏高冬低”的年变特征。分析认为,清水河水氡2005年8月开始出现的大速率转折下降的原因与采样系统发生了变化和原水口出水量逐步减小有关,是地震异常的可能性不大。  相似文献   

10.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Intensive groundwater development in the urban area of the Nagaoka Plain, Japan, has induced changes in the pH and saturation index of calcite in groundwater. To account for these chemical changes, it is important to determine seasonal variations of recharge and the groundwater flow system in the aquifer. This study identified the sources and flow system of groundwater in this urban area by a comprehensive method using stable isotope data and a numerical groundwater model of the Nagaoka Plain. Stable isotope evidence shows that the groundwater is recharged by meteoric water originating from low‐elevation areas rather than the mountains surrounding the plain. The water table in the study area is drawn down during the winter and recovers in the other seasons. Numerical modeling shows that discharge occurs primarily along the Shinano River during the recovery period, whereas discharge is centered in urbanized areas during the drawdown period, when a conical depression of the water table stimulates recharge from the immediate area. These results are indications of a local groundwater flow system, with its recharge area between the Shinano River and the urban areas, which is governed by intensive seasonal groundwater extraction.  相似文献   

12.
The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft‐bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition‐induced temperature anomalies resemble the signal of groundwater discharge while scouring will cause the cable to float in the water column and measure stream water temperatures. DTS applied in a looped layout with nine fibre optic cable rows in a 70 × 5 m section of a soft‐bedded stream made it possible to detect variability in streambed temperatures between October 2011 and January 2012. Detailed monthly streambed elevation surveys were carried out to monitor the position of the fibre optic cable relative to the streambed and to quantify the effect of sedimentation processes on streambed temperatures. Based on the simultaneous interpretation of streambed temperature and elevation data, a method is proposed to delineate potential high‐groundwater discharge areas and identify deposition‐induced temperature anomalies in soft‐bedded streams. Potential high‐discharge sites were detected using as metrics the daily minimum, maximum and mean streambed temperatures as well as the daily amplitude and standard deviation of temperatures. The identified potential high‐discharge areas were mostly located near the channel banks, also showing temporal variability because of the scouring and redistribution of streambed sediments, leading to the relocation of pool‐riffle sequences. This study also shows that sediment deposits of 0.1 m thickness already resulted in an increase in daily minimum streambed temperatures and decrease in daily amplitude and standard deviation. Scouring sites showed lower daily minimum streambed temperatures and higher daily amplitude and standard deviation compared with areas without sedimentation and scouring. As a limitation of the approach, groundwater discharge occurring at depositional and scouring areas cannot be identified by the metrics applied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

14.
Surface nuclear magnetic resonance (SNMR) is a relatively new geophysical method for non‐invasive groundwater exploration and aquifer characterization. Conventional SNMR surveys based on one‐dimensional (1‐D) inversion of amplitude data recorded only using coincident loops provide limited or distorted groundwater distribution information, especially in regions with strong lateral heterogeneity and complicated hydrological environments. The simplistic approach limits the applicability and efficiency of SNMR, which was therefore made more effective in this study using a sophisticated signal response formulation. The elliptical polarization parameters of the excitation magnetic fields and 2‐D sensitivity kernels (including real and imaginary parts) of three commonly used loop configurations were first calculated. After all the individual complex signals of five simulated measurement series along a profile were incorporated. The 2‐D magnetic resonance tomography (MRT) complex inversion scheme was then used to perform high resolution tomography of synthetic models under the three loop configurations, taking full advantage of the different sensitivity distributions offered by the different loop configurations and the high sensitivity of the imaginary parts of signals to deep structures. Contrast analyses of the tomographic results showed that the complex inversions significantly decreased model ambiguities and increased depth resolution even with artificial noise added. Coincident loop measurements usually gave the best vertical resolution, and separated loops provided better lateral resolution. However, various factors would influence phase data, meaning that the complex inversion of field data is neither very reliable nor very common at present.  相似文献   

15.
Fluvial erosion processes are driven by water discharge on the land surface, which is produced by surface runoff and groundwater discharge. Although groundwater is often neglected in long‐term landscape evolution problems, water table levels control patterns of Dunne runoff production, and groundwater discharge can contribute significantly to storm flows. In this analysis, we investigate the role that groundwater movement plays in long‐term drainage basin evolution by modifying a widely used landscape evolution model to include a more detailed representation of basin hydrology. Precipitation is generated by a stochastic process, and the precipitation is partitioned between surface runoff and groundwater recharge using a specified infiltration capacity. Groundwater flow is simulated by a dynamic two‐dimensional Dupuit equation for an unconfined aquifer with an irregular underlying impervious layer. The model is applied to the WE‐38 basin, an experimental catchment in Pennsylvania, because 60–80 per cent of the discharge is derived from groundwater and substantial hydrologic and geomorphic information is available. The hydrologic model is first calibrated to match the observed streamflows, and then the combined hydrologic/geomorphic model is used to simulate scenarios with different infiltration capacities. The results of this modelling exercise indicate that the basin can be divided into three zones with distinct streamflow‐generating characteristics, and different parts of the basin can have different geomorphic effective events. Over long periods of time, scenarios in which groundwater discharge is large tend to modify the topography in a way that promotes groundwater discharge and inhibits Dunne runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
对山西4口水化学观测井(泉)及周边地表水进行水化学和氢氧同位素分析,利用Piper图、durov图、Na-K-Mg三角图等方法研究其水化学特征及成因,得出井(泉)水岩平衡程度、热储温度、地下水循环深度及地下水补给来源详情;分析了井(泉)水氡测项映震特征,应用水氡映震效果与水岩平衡程度、地下水循环深度表现出的特征,评价了地震监测效能。评价结果显示夏县井、奇村井优于临猗井,适于开展地震水化学观测;定襄泉应用该水化学方法评价尚存不足之处,需要探索适用于该类观测泉点的物理与化学相结合的评价方法。  相似文献   

17.
本文介绍了水氡正常年动态曲线的确定方法,并提出用正常年动态曲线及五日标准差等评价水氡资料的内在质量。  相似文献   

18.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   

19.
Groundwater surface water interaction in the hyporheic zone remains an important challenge for water resources management and ecosystem restoration. In heterogeneous stratified glacial sediments, reach‐scale environments contain an uneven distribution of focused groundwater flow occurring simultaneously with diffusely discharging groundwater. This results in a variation of stream‐aquifer interactions, where focused flow systems are able to temporally dominate exchange processes. The research presented here investigates the direct and indirect influences focused groundwater discharge exerts on the hyporheic zone during baseflow recession. Field results demonstrate that as diffuse sources of groundwater deplete during baseflow recession, focused groundwater discharge remains constant. During baseflow recession the hyporheic zone is unable to expand, while the high nitrate concentration from focused discharge changes the chemistry of the stream. The final result is a higher concentration of nitrate in the hyporheic zone as this altered surface water infiltrates into the subsurface. This indirect coupling of focused groundwater discharge and the hyporheic zone is unaccounted for in hyporheic studies at this time. Results indicate important implications for the potential reduction of agricultural degradation of water quality.  相似文献   

20.
Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl?) in the near‐surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long‐term, average groundwater flow patterns using a nonstationary kriging technique at the basin‐scale (i.e., across the entire peninsula). Two regions identified as major basin‐scale discharge zones—the Michigan and Saginaw Lowlands—were further analyzed with regional‐ and local‐scale SWL models. Groundwater valleys (“discharge” zones) and mounds (“recharge” zones) were identified for all models, and the proportions of wells with elevated Cl? concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl? distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号