首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
As other calcsilicate-hosted ore deposits the Tumurtijn-ovoo Fe–Mn–Zn deposit is subdued to the question how the ore elements took place, whether linked to epigenetic silicification of a limestone host or bound to syngenetic precipitation during the deposition of a calcareous-siliceous sediment. The comparison of high Zn/Cd ratios of ores from Tumurtijn-ovoo ranging from 514 to 724 with those of other ore deposits relates Tumurtijn-ovoo to the group of submarine hydrothermal deposits which got their ore elements from basaltic source rocks by subseafloor leaching. Hence, respecting geological and textural features of the ores, a synsedimentary precipitation of zinc and cadmium in a volcano-sedimentary environment is suggested for Tumurtijn-ovoo. A group of low Zn/Cd ratios (274–297) is correlated with processes of mobilization and redeposition of sphalerite.  相似文献   

2.
The Sichuan-Yunnan-Guizhou(SYG)Zn-Pb metallogenic zone in SW China contains>400 carbonate-hosted hydrothermal Zn-Pb deposits.Some of these,such as the Huize,Tianbaoshan,and Daliangzi deposits,are super-large deposits with significant reserves of Cd,Ge,and Ag.However,the sources of these metals remain controversial.This study investigated the Cd isotopic geochemistry of the Huize deposit,the largest Zn-Pb deposit in the SYG area.Sphalerites formed at three stages in the deposit have different colors:black or dark brown(Stage Ⅰ),red(Stage Ⅱ),and light-yellow(Stage Ⅲ).The δ114/110Cd values of the sphalerites are in the order Stage Ⅲ<Stage Ⅰ<Stage Ⅱ.Kinetic isotopic fractionation is likely the key factor causing the lower δ114/110Cd values in the early formed Stage Ⅰ sphalerites than in later-formed Stage Ⅱ sphalerites,with cooling of ore-forming fluids being responsible for the still lower values of the Stage Ⅲ sphalerites.In galena,the δ114/110Cd values are inversely correlated with Cd contents and tend to be higher in high-Zn galena.We speculate that Cd isotopic fractionation was significant during the precipitation of sphalerite and galena,with light Cd isotopes being enriched in galena rather than sphalerite.Comparison of the Cd isotopic signatures and Zn/Cd ratios of different endmembers suggests that the δ114/110Cd values and Zn/Cd ratios of sphalerite from the Huize deposit,as well as other large-scale deposits from the SYG area,are lie in those range of Emeishan basalts and sedimentary rocks and the mean δ114/110Cd values of these deposits show good negative correlation with 1/Cd,suggesting that the ore-forming materials of these deposits were derived from the mixing of Emeishan basalts and sed-imentary rocks.This study demonstrates that Cd isotopes can be useful proxies in elucidating ore genesis in large Zn-Pb deposits.  相似文献   

3.
Although Zn–Pb deposits are one of the most important Cd reservoirs in the earth, few studies have focused on the Cd isotopic fractionation in Zn–Pb hydrothermal systems. This study investigates the causes and consequences of cadmium and sulfur isotope fractionation in a large hydrothermal system at the Tianbaoshan Zn–Pb–Cd deposit from the Sichuan–Yunnan–Guizhou (SYG) metallogenic province, SW China. Moderate variations in Cd and S isotope compositions have been measured in sphalerite cover a distance of about 78 m. Sphalerite has δ114/110Cd values ranging from 0.01 to 0.57‰, and sulfides (sphalerite, galena and chalcopyrite) have δ34SCDT values ranging from 0.2 to 5.0‰. Although δ34SCDT and δ114/110Cd values in sphalerites have no regular spatial variations, the δ34SCDT values in galena and calculated ore-forming fluid temperatures decreased from 2.1 to 0.2‰ and from about 290 to 130 °C, respectively, from the bottom to the top of the deposit. Heavy Cd isotopes are enriched in early precipitated sphalerite in contrast to previous studies. We suggest that Cd isotopic compositions in ore-forming fluids are heterogeneous, which result in heavy Cd isotope enrichment in early precipitated sphalerite. In comparison with other Zn–Pb deposits in the SYG area, the Tianbaoshan deposit has moderate Cd contents and small isotope fractionation, suggesting differences in origin to other Zn–Pb deposits in the SYG province.In the Tianbaoshan deposit, the calculated δ34S∑S-fluids value is 4.2‰, which is not only higher than the mantle-derived magmatic sulfur (0 ± 3‰), but also quite lower than those of Ediacaran marine sulfates (about 30 to 35‰). Thus, we suggest that reduced sulfur of ore-forming fluids in the deposit was mainly derived from the leaching of the basement, which contains large amount of volcanic or intrusive rocks. Based upon a combination of Cd and S isotopic systems, the Tianbaoshan deposit has different geochemical characteristics from typical Zn–Pb deposits (e.g., the Huize deposit) in SYG area, indicating the unique origin of this deposit.  相似文献   

4.
张伟  张高强  窦磊  文俊 《物探与化探》2012,36(4):529-533
以广东省典型铅锌多金属矿床为例,探讨各矿区镉的含量特征及不同类型矿床闪锌矿中镉的含量及锌镉比值分布特点,结果显示,镉富集程度受不同矿区地球化学背景的影响较大;不同矿区镉与锌均表现出相关—强相关关系,表明两者在成矿过程中具有相似的地球化学特征;高镉含量与低锌镉比值叠合区主要位于已知铅锌矿床分布地段,向四周镉的富集程度有所降低;不同矿床的闪锌矿中,镉的富集系数及锌镉比值具明显阶梯性,除受控于闪锌矿的形成温度、颜色及类型外,还与矿区富银关系密切。该研究为了解广东省镉分布特征及镉矿地质评价工作提供了科学依据。  相似文献   

5.
岔路口斑岩Mo-Zn-Pb矿床位于大兴安岭北段,是近年来新发现的超大型斑岩-热液脉状Mo-Zn-Pb成矿系统,脉状Zn-Pb矿化直接叠置在斑岩Mo矿化顶部。本文挑选岔路口斑岩型矿化及热液脉型矿化的黄铁矿、闪锌矿、方铅矿,通过EMPA、ICP-MS等多种方法分析硫化物的主微量元素组成,发现岔路口各阶段硫化物均富集Mo元素,相比于斑岩型矿化各阶段中的黄铁矿,Zn、Pb、Mn、Cd、Ga、Ag、Bi等元素在铅锌矿阶段内相对富集;相比于过渡阶段,铅锌阶段闪锌矿中Mo、Co元素及方铅矿中的Bi、Cd和Ag元素含量下降。微量元素在不同阶段内的变化可能是流体降温和天水混合的结果。黄铁矿的稀土总量与成矿岩体最接近,且与成矿岩体和围岩有相似的稀土配分模式,并有较明显的Eu负异常;黄铁矿宽广的Y/Ho比值(25.0~39.0)与成矿岩体的Y/Ho比值范围(27.4~38.7)最接近,同时包括了围岩相对较窄的Y/Ho比值(25.7~31.3),这表明成矿物质主要与成矿岩体同源,可能加入了一定量的围岩物质,岔路口硫化物富Mo的特征受控于深部斑岩Mo矿化岩浆-热液系统。对比东秦岭-大别W-Mo-Pb-Zn矿集区的远源热液脉状Pb-Zn矿床,岔路口浅部近源脉状矿化中的黄铁矿具有更高含量Mo/Ag-Bi/Sb比值和Mo/Pb-Sn/Sb比值,因此浅部硫化物的高Mo含量以及黄铁矿中相关元素比值的高值,可为脉状Zn-Pb矿化附近隐伏斑岩钼矿化的勘探提供新线索。此外,与其他热液脉状和斑岩型矿床相比,岔路口矿床硫化物更富集中高温元素;且综合分析多类矿床的硫化物的微量元素后,本文还初步查明不同矿床类型硫化物富集的微量元素,这一尝试可为矿床成因的判断提供新的思路。  相似文献   

6.
龚雪婧  杨竹森  庄亮亮  马旺 《矿床地质》2019,38(6):1365-1378
西藏纳如松多铅锌矿床是冈底斯北侧Pb-Zn-Ag-Mo成矿带中规模最大且最为典型的与斑岩系统相关的铅锌矿床,发育有多种矿化样式。本次研究选取该矿床隐爆角砾岩型矿体中的闪锌矿开展LA-ICP-MS微量元素组成研究,发现其中Fe含量不高,不属于高温铁闪锌矿,以富集Cd、Mn、Co,而贫In、Ga、Ge、Se、Te为特征。闪锌矿In/Ga值、In/Ge值及Zn/Cd值指示纳如松多隐爆角砾岩型铅锌矿体形成于中低温环境,且属于热液型矿床的范畴。闪锌矿原位微量元素特征指示纳如松多铅锌矿床的形成主要受到来自于岩浆热液作用的影响和控制,成矿物质主要来自于深部斑岩岩浆系统。  相似文献   

7.
碳酸盐矿物是MVT型铅锌矿床最为常见的热液蚀变矿物,记录了成矿流体特征,其元素或同位素组成对示踪和定位矿体具有一定的指示意义,但由于该类矿床中碳酸盐矿物成因多样,单一的岩相学观察往往难以准确识别与成矿有关和无关的方解石,需要辅以地球化学手段来确定方解石成因。本文利用钻孔编录、岩相学观察、C-O-Sr同位素和原位微量与稀土元素组成分析等手段,探讨了青海多才玛超大型MVT铅锌矿床中与成矿有关和无关两期方解石的矿物化学特征。结果表明,多才玛矿床成矿前方解石(Cal1)空间上与矿体无相关关系,遍布于中二叠统九十道班组灰岩内,阴极发光呈暗棕色至棕黄色,无明显生长环带;成矿期方解石(Cal2)主要产于铅锌矿体内及其上盘围岩中,多呈砂糖粒状-皮壳状充填于围岩裂隙和溶孔内,阴极发光呈暗黄色至亮橙色,常发育生长环带。相对于Cal2, Cal1与围岩的C-O-Sr同位素组成更为接近,这表明水岩反应期间,Cal1组成受围岩影响更大,Cal2组成受影响更小;相比于Cal1,Cal2具有较高的Mn、Fe、Zn、Pb含量和U/Th、V/Cr值以及较低的LREE/HREE值、Mg、Sr含量和弱的Ce负异常,指示成矿...  相似文献   

8.
吴胜华  孙冬阳  李军 《岩石学报》2020,36(1):245-256
华南包括两个世界级的W矿带,分别是南岭和江南造山带W成矿带。柿竹园W多金属矿床位于南岭地区,香炉山W矿床位于江南造山带东北部。两个矽卡岩W矿床都发育硫化物成矿阶段。但硫化物和成矿元素组成存在显著的差异。前者由含Pb、Zn、Ag硫化物和黝铜矿、银黝铜矿、含Ag斜方辉铅铋矿和铁硫锡铜矿硫盐组成;后者主要为磁黄铁矿。柿竹园远接触带Pb-Zn-Ag矿脉中硫化物(闪锌矿、黄铜矿、方铅矿和磁黄铁矿)较富集B、Mn、Cr、Sb、Sn和Hg,香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物(磁黄铁矿、黄铜矿和闪锌矿)较富集W、Se和Bi。两个矿床中黄铜矿、闪锌矿和方铅矿较富集Ag,黄铜矿、闪锌矿富集In和Sn,闪锌矿还富集Cd。两个矿床中的硫化物微量元素分析表明与矽卡岩W矿成矿相关的硫化物可载有多种微量元素。这些元素参与到硫化物中程度由多种因素控制。具体如下,硫化物中B含量高低与成矿相关岩体中B含量相关;在相对高温和还原条件下,硫化物中W含量较高;闪锌矿中Mn和Cd与Zn发生取代作用; Cr可以一定程度进入到硫化物中,并受成矿流体中Cr含量影响; Se与S发生了一定程度的取代进入硫化物,并受流体中它的含量控制; Bi在闪锌矿与黄铜矿易形成固溶体;硫化物中Sb含量受初始流体中它的含量影响,方铅矿中易包裹一定的辉锑矿(Sb_2S_3)或含Sb的硫盐矿物; Ag是否形成独立的矿物相和进入哪些硫化物中,取决于流体中Ag的初始含量和硫化物的沉淀次序;硫化物中Hg的含量受温度影响。  相似文献   

9.
Sphalerite in the Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou is characteristically light-yellow in color with significant enrichment of cadmium which ranges from 0.83% to 1.97% (averaging 1.38%) in concentration in the mineral, corresponding to an enrichment coefficient as high as 30. 47 to 72. 96. In comparison with other major Pb−Zn deposits in the world (the Mississippi Valley deposits, and the Fankou and Jinding deposits in China) the Niujiaotang deposit isn n×10 times richer in cadmium. Sphalerite in the deposit is also rich in Ga and Ge, but poor in In, Mn and Fe, suggesting some special mechanisms that govern the geochemical behavior of these trace elements. Except for a minor amount of independent minerals like greenockite, cadmium occurs mainly as isomorphous impurity in the crystal lattice of sphalerite. During weathering and leaching under supergene condition, cadmium was separated from Zn, resulting in some secondary minerals of Cd, including oxides and otavite. This project was jointly supported by the National Natural Science Foundation of China (No. 496-33110) and the Laboratory Foundation of Ore Deposit Geochemistry of Chinese Academy of Sciences.  相似文献   

10.
The southwestern Sabzevar basin is the north of Central Iranian Microcontinent hosts abundant mineral deposits, including exhalative Mn mineralization and Cu-Zn volcanogenic massive sulfide (VMS) deposits. Amongst them, the Nudeh Besshi-type Cu–Zn volcanogenic massive sulfide (VMS) deposit is hosted within the lower part of a Late Cretaceous volcano-sedimentary sequence composed of alkali olivine basalt flows and tuffaceous silty sandstone. Based on investigations into the ore geometry, mineralogy, and texture, we recognized three different ore facies: (1) a stockwork of sulfide-bearing quartz veins cutting across the footwall volcano-sedimentary rocks and representing the stringer zone; (2) a massive ore type, displaying replacement texture with pyrite, chalcopyrite, sphalerite, friedrichite, and minor magnetite; and (3) a bedded ore type, with laminated to disseminated pyrite and chalcopyrite. EPMA studies indicate a distinctive minor element distribution between the different ore types of the Nudeh deposit. The Fe content in the sphalerite ranges from 0.65–1.80?wt.%, indicating the Fe-poor nature of the sphalerite. However, the Cd content in sphalerite ranged between 0.164–0.278?wt.%. According to the mineral compositions, Zn, Se, and Ag are found in bornite as minor elements. In the bedded ore facies, the pyrite contains higher levels of Se (up to 0.35?wt.%). The Zn content in the friedrichite in all of the ore samples is low. The Co/Ni ratios in pyrite from the Nudeh ore are lower than those of most magmatic deposits, but are similar to those from volcanogenic deposits, and hence support the proposed hydrothermal origin of the deposit. Two generations of quartz, Q1 and Q2 in the stockwork veins, contain primary fluid inclusions and these contain two phases (liquid and vapor). The lack of vapor-rich inclusions or variable liquid/vapor ratios indicate that the fluids did not boil at the site of trapping. Salinity for both Q1 and Q2 fluid inclusions ranges between 2.2–6.8?wt.% eq. NaCl. Homogenization temperatures for inclusions in the Q1 and Q2 veins average at about 296?°C and are similar to the temperatures of hydrothermal fluids discharged through vents in many modern seafloor VMS deposit. The Nudeh Besshi-type VMS deposit appears to have formed on the seafloor and based on the salinity and temperature constraints from the underlying stockwork, a buoyancy plume model is proposed as a mechanism for precipitation.  相似文献   

11.
The Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province, located in southwestern margin of the Yangtze Block, is an important part of the large-scale low-temperature metallogenic domain in southwestern China. The Maliping Pb-Zn deposit, situated in the central part of Zhaotong-Qujing metallogenic belt, was found in northeastern Yunnan Province recently. The orebody is hosted in Late Cambrian Yuhucun Formation, occurring as stratabound, tense and venis. The mineral assemblage of the Maliping deposit is relatively simple. The main sulfide minerals are sphalerite and galena with minor pyrite. Gangue minerals include mainly dolomite, calcite, quartz and barite. LA-ICPMS spots and mapping analysis for the different sulfides from Maliping Pb-Zn deposit, and the distribution and existing forms of germanium, cadmium, indium and other trace elements were investigated. The results show that different sulfides are characterized by different contents of trace elements. Mn, Cu, Sn, Cd, In and Ge are mainly enriched in sphalerite, while galena from this deposit is enrichment of Ag, Sb and Se, and pyrite is characterized by enrichment of As, Co and Ni. Comparing with the content of dispersed elements in different sulfides, the results indicate that sphalerite is the primary carrier mineral of Ge, In and Cd. Cd, Ge, In, Mn, As, Sb and Ag occur as isomorphous substitution in the sphalerite, and Cu mostly exists in sphalerite as isomorphism but part of Cu occurs as micro-inclusions (chalcopyrite) in sphalerite. Considered the distinct positive relationship between Cu and Ge, the results imply that the substitution mechanism of Ge and Cu is possibly 3Zn(2+) <-> Ge4+ + 2Cu(+). Additionally, sphalerite from Maliping Pb-Zn deposit is characterized by enrichment of Cd, Ge and depleted in Mn, Fe, Co and Sn which coincides with the feature of MVT Pb-Zn deposit and differs from the sedimentary-exhalative deposit and magmatic-hydrothermal deposit. On account of the geological features, other geochemical researches and its ore-forming temperature belonging to low temperature, it is suggested that the Maliping deposit belongs to an MVT Pb-Zn deposit. Notably, we imply that ore-forming fluid extracted indium of magmatic and volcaniclastic rocks from the metamorphic basement, resulting in the enrichment of indium in sphalerite from the deposit.  相似文献   

12.
四川盆地富硫天然气与盆地周缘铅锌铜矿的成因联系   总被引:1,自引:0,他引:1  
李厚民  张长青 《地质论评》2012,58(3):495-510
金属元素的搬运和沉淀是热液矿床成矿机理研究的重要方面。目前人们普遍认为热液矿床中金属元素主要呈硫的络合物和卤素络合物形式搬运。MVT铅锌矿床等硫化物矿床盐度较高,包裹体成分中阳离子以Na+、K+、Ca2+、Mg2+为主,阴离子以Cl-、F-、CO2-3为主,很少有HS-、S2-,表明金属元素主要以氯的络合物形式搬运,外来硫的加入是导致铅锌成矿物质以硫化物形式沉淀成矿的关键。四川盆地天然气中富含H2S,其与周缘MVT铅锌矿床具有密切的时空关系,据此推测天然气中的H2S可能是导致铅锌硫化物沉淀形成MVT铅锌矿床的主要硫源,天然气中的H2S与铅锌成矿流体在古油藏中作用形成含沥青的铅锌矿床;当含硫化氢的天然气运移离开古油藏后与含矿流体混合时,形成不含沥青的铅锌矿床。另外,石油热裂解产生的不含H2S的天然气使得含铜热液中的铜还原,以自然铜形式沉淀形成含沥青的玄武岩铜矿;石油热化学硫酸盐还原(TSR)过程中,还会发生溶蚀作用,扩大碳酸盐岩孔隙,为成矿提供空间。  相似文献   

13.
《International Geology Review》2012,54(10):1300-1310
The Tianbaoshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province, is located in the western Yangtze Block and contains 2.6 million tonnes of 10–15 wt.% Pb + Zn metals. Ore bodies occur as vein or tubular types and are hosted in Sinian (late Proterozoic) carbonate rocks and are structurally controlled by the SN-trending Anninghe tectonic belt and NW-trending concealed fractures. The deposits are simple in mineralogy, with sphalerite, galena, pyrite, chalcopyrite, arsenopyrite, freibergite, and pyrargyrite as ore minerals and dolomite, calcite, and quartz as gangue minerals. These phases occur as massive, brecciated, veinlet, and dissemination in dolostone of the upper Sinian Dengying Formation. Hydrogen and oxygen isotope compositions of hydrothermal fluids range from –47.6 to –51.2‰ and –1.7 to +3.7‰, respectively. These data suggest that H2O in hydrothermal fluids had a mixed origin of metamorphic and meteoric waters. Carbon and oxygen isotope compositions range from –6.5 to –4.9‰ and +19.3 to +20.2‰, respectively. These compositions plot in the field between mantle and marine carbonate rocks with a negative correlation, suggesting that CO2 in the ore-forming fluids had multiple sources, including the Permian Emeishan flood basalts, Sinian-to-Permian marine carbonate rocks, and organic matters in Cambrian-to-Permian sedimentary rocks. Sulphur isotope compositions range from –0.4 to +9.6‰, significantly lower than Cambrian-to-Permian seawater sulphate (+15 to +35‰) and sulphate (+15 to +28‰) from evaporates in Cambrian-to-Permian strata, implicating that the S was derived from host-strata evaporates by thermal–chemical sulphate reduction. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios range from 18.110 to 18.596, 15.514 to 15.878, and 38.032 to 39.221, respectively, which plot in field of the upper crust Pb evolution curve, unlike those of Proterozoic basement rocks, Sinian dolostone, Devonian-to-Permian carbonate rocks, and the Permian Emeishan flood basalts, implying complex derivation of Pb metal in the ore-forming fluids. Geological and isotopic studies of the Tianbaoshan Pb–Zn deposit reveal that constituents in the hydrothermal fluids were derived from multiple sources and that fluid mixing was a possible metallogenic mechanism. The studied deposit is not distal magmatic–hydrothermal, sedimentary exhalative (SEDEX), or Mississippi Valley (MVT) types, rather, it represents a unique ore deposit type, named in this article the SYG type.  相似文献   

14.
川滇黔铅锌矿集区是华南大面积低温成矿域的重要组成部分,区内铅锌矿床是否属于MVT型矿床长期存在争议。该区铅锌矿床以富集Ge等稀散元素为特征,闪锌矿是其主要载体矿物,但稀散元素在黄铁矿中是否富集、赋存状态及微量元素组成特征等研究基本属于空白。本文通过LA-ICPMS研究富乐黄铁矿中微量元素(尤其是稀散元素)的富集特征,发现黄铁矿中也相对富集Ge。本研究样品选自富乐矿床的富乐和富盛两个矿段,包括1350、1410和1536三个中段(由深到浅),LAICPMS分析结果表明,该矿床黄铁矿以富集Cu、As、Co、Ni为特征,局部富集Pb(Sb)和Zn(以方铅矿和闪锌矿显微包裹体形式赋存于黄铁矿中),该类黄铁矿富集的稀散元素主要为Se、Ge及少量Tl、Te,而Cd和In以类质同象形式赋存于含Zn的显微包裹体(闪锌矿)中,类质同象是其余稀散元素主要赋存形式,且黄铁矿中Ge与Cu存在较好相关关系,可能存在Cu~(2+)+Ge~(2+)?2Fe~(2+)耦合置换方式。此外,黄铁矿中稀散元素的富集与成矿元素(特别是Cu)的富集密切相关,随着成矿作用的进行,从矿体深部到浅部,成矿温度逐渐降低,Se/Te比值逐渐升高,且稀散元素与成矿元素呈逐渐增加趋势。研究表明,该矿床黄铁矿的Co/Ni比值基本都小于1. 00,暗示其属于沉积改造型黄铁矿,在Co-Ni和稀散元素Se-Tl含量投影图上,富乐矿床黄铁矿的投影点与MVT型矿床投影区基本一致,而明显有别于SEDEX、VMS和矽卡岩型矿床中黄铁矿的投影区,结合富乐矿床类似于MVT型的地质特征,我们认为富乐矿床属于MVT型铅锌矿床。  相似文献   

15.
Abstract. The Meng'entaolegai In-rich Ag-Pb-Zn deposit is located in the eastern part of Inner Mongolia. It is one of the In-richest deposits in China. Large amounts of quartz and sulfide minerals constitute a hydrothermal quartz-sulfide vein deposit within a Hercynian acidic granite massif, which occupies an area of about 400 km2. Thirty-six orebodies, controlled strictly by the E-W trend faults, are found in the orefield of 6 km in length from east to west and 200 to 1,000 m in width from south to north. The ore minerals are mainly galena, sphalerite and pyrite, and subordinate chalcopyrite, arsenopyrite, cassiterite and stannite with many Ag-minerals. The gangue minerals are mainly quartz, calcite, sericite and chlorite. Economic components of the deposit are dominated by Pb andZn (reserves of Pb and Zn are 0.17 Mt and 0.37 Mt, and their grades are 1 % and 2.3 %, respectively), with Ag, Sn, In and Cd (1,800 t Ag, >2,000 t Sn, >500 t In and 1,800 t Cd) as by-products. Indium is highly enriched in ores and its contents are 9 to 295 ppm in ores and 85 to 2,660 ppm in sphalerite. Analytical results show that the ore-forming fluid of this deposit contains 0.8–3.5 ppm In and 4–36 ppm Sn, and the two elements show a very good positive correlation with a correlation coefficient of 0.8672, while the correlation between In and Zn in the ore-forming fluids, with a correlation coefficient of 0.5723, is not as good as that between In and Sn. This indicates that indium has an affinity with tin in the ore-forming fluids. The authors think that this is probably the main reason why those In-rich deposits spread over the world are simultaneously enriched in tin.  相似文献   

16.
The distribution characteristics and existing state of cadmium in the Jinding Pb-Zn deposit were studied. It was discovered that Cd was mainly distributed in sphalerite as an isomorphic impurity. There was a good correla-tion between Cd and Zn in the primary ore. With the oxidation and resolution of pyrite, sphalerite, sulfide, and etc., many secondary minerals, such as colloform sphalerite and smithsonite, were formed. The distribution of Cd is not symmetrical, and enrichment and dilution were observed in partial area of the oxidation zone in the deposit. Cd, except in external pore space or cracks of secondary minerals as independent minerals, such as greenockite, was mainly distributed in sphalerite as an isomorphic impurity in the secondary sphalerate and smithsonite in the oxida-tion zone. The research showed that Cd showed a very strong active transfer ability in the oxidation process, not only indicating that supergene leaching might be the main reason for Cd enrichment in some Pb-Zn deposits, but also reflecting that Cd was easily mobilizeed and transferred to pollute ore areas in the oxidation process. Furthermore, Cd in oxidation ore was more easily mobilized and transferred to induce bad hazards for ore areas with the effect from AMD which was produced from oxidation of sulfides.  相似文献   

17.
The Tres Marias carbonate-hosted Zn–Ge deposit in Chihuahua, Mexico contains sphalerite with the highest average Ge (960 ppm) and willemite with the highest reported Ge contents of Mississippi-Valley-type (MVT) deposits worldwide. This has prompted current exploration efforts to focus on the deposit as a high-grade source of germanium. The sulfide-rich ore type (>125,000 t at 20% Zn and 250 g/t Ge) contains Fe-rich botryoidal sphalerite (type I) associated with solid hydrocarbons. This type exhibits distinctive intimately intergrown lamellar texture of high-Fe sphalerite (average 9.9 wt.% Fe and 800 ppm Ge) and a somewhat less Fe-rich sphalerite phase (average 5.5 wt.% Fe and 470 ppm Ge). Reddish-brown banded sphalerite (type II, average 5.7 wt.% Fe and 1,320 ppm Ge) is subordinately followed by galena and pyrite. The sulfide-poor “oxidized” zinc ore (up to 50 wt.% Zn; 250 to 300 ppm Ge) is a fine-grained, often friable, alteration product of the sulfide ore and associated limestone and breccia host. While some areas are dominated by carbonates and sulfates, others are enriched in silicates such as hemimorphite and willemite. The gangue assemblage includes goethite, hematite, and amorphous silica or quartz. Minor wulfenite, greenockite, cinnabar, and descloizite also occur. Willemite occurs as interstitial replacement of sphalerite and fracture fillings in the oxidized ore and can be unusually rich in Pb (up to 2.0 wt.%) and Ge (up to 4,000 ppm). Oscillatory zonation reflects trace element incorporation into willemite from the oxidation of primary Ge-bearing sphalerite and galena by siliceous aqueous fluids. The Tres Marias deposit has hybrid characteristics consisting of a primary low-temperature MVT Ge-rich Zn–Pb sulfide ore body, overprinted by Ge-rich hemimorphite, willemite, and Fe oxide mineralization.  相似文献   

18.
显微红外测温是利用红外显微镜研究不透明半透明矿物的流体包裹体丰度和分布特征,并与冷热台相结合进行流体包裹体显微测温分析的一种有效的新技术。云南会泽超大型富锗银铅锌矿床是分布于川滇黔接壤区典型的会泽型(HZT)铅锌矿床。本文以该矿床的闪锌矿、方解石流体包裹体为例,应用显微红外测温技术发现闪锌矿中发育大量流体包裹体,按其相态可分为6类:纯气相(V)、富液相气液两相(L+V)、富气相气液两相(L+V)、纯液相(L)、含子矿物三相(L+V+S)、含CO2三相(LCO2+LH2O+VCO2)包裹体,而在热液方解石中仅发现富液相气液两相(L+V)、纯液相(L)包裹体。闪锌矿中的流体包裹体均一温度集中在2个区间:150~221℃和320~364℃;而盐度变化范围较大,主要集中于3个区间:12.0%~18.0%、5.0%~11.0%、1.1%~5.0%。不同世代闪锌矿流体包裹体均一温度大致反映成矿流体演化的全过程,而方解石流体包裹体均一温度主要反映成矿流体演化的中晚阶段,而且与脉石矿物(方解石)共生的闪锌矿流体包裹体均一温度也高于方解石包裹体均一温度;反映了闪锌矿流体包裹体较方解石更能反映成矿流体的信息,进一步揭示从早成矿阶段到晚成矿阶段,成矿流体大致经历了中高温-中盐度→中低温-中盐度→中低温-中低盐度的演化过程。通过压力校正后的流体包裹体捕获温度反映了早成矿阶段成矿流体呈中高温,进一步证实了该矿床并非低温矿床。通过矿床对比研究,不仅反映了该矿床明显不同于典型的MVT铅锌矿床,而且表明了显微红外测温技术为该类矿床成矿流体p-T-x条件及矿床成因的研究提供了新方法与途径,并将在金属矿床成矿流体的研究领域发挥重要作用。  相似文献   

19.
火烧云矿床是我国新发现具有超大型规模的非硫化物铅锌矿床,成因倍受关注.矿床主要由菱锌矿和白铅矿组成,形成块状及少量纹层状和角砾状矿石,构成了层状矿体.赋矿围岩为中侏罗统含沉积石膏的台地相碳酸盐岩,为密西西比河谷型矿床的典型赋矿围岩,而非喷流沉积型矿床的赋矿围岩.矿石中普遍出现被白铅矿交代的方铅矿残留,表明原生矿化为硫化物.方铅矿δ34SV-CDT值为-34‰^-18‰,显示还原硫的来源与细菌还原作用作用有关,这在MVT矿床中较为常见,而在与岩浆作用有关的铅锌矿床中少见.同时,矿床也不具有与岩浆有关的热液矿化和蚀变特征,故矿床的原生硫化物矿化应为MVT型.通过菱锌矿和白铅矿的O同位素组成,计算出形成这两种矿物的流体具有低温、低δ18O值的大气降水的特征,结合白铅矿交代方铅矿的这一现象,表明目前观察到的由菱锌矿和白铅矿构成铅锌矿体系是在表生作用下直接交代原生硫化物矿体形成.  相似文献   

20.
黄岗梁铁锡矿床位于大兴安岭中南段晚古生代增生造山带。矿区内闪锌矿产于矽卡岩中,可分为浸染状和层纹状闪锌矿。本文对两种闪锌矿进行了高精度LA-ICP-MS元素含量测试,结果表明矿区两种闪锌矿具有相同成因特征,闪锌矿中Mn、Cu、As、In较富集,Ga、Ge、Cd含量较低,而As、Sn、Bi、Pb含量变化较大。Cu、Sn、Bi、Pb等元素在闪锌矿中以独立矿物赋存,Mn、Fe、Ga、Ge、Cd、In、Sb以类质同像形式赋存在闪锌矿晶格中。In/Ga、In/Ge比值较低,Zn/Cd比值为233~250,指示闪锌矿形成于中高温环境。Cd/Fe、Cd/Mn比值分别小于0.1和0.5,指示闪锌矿成因与岩浆活动有关,In Ge特征图解也指示其矽卡岩成因。通过与国内外典型矿床闪锌矿微量元素特征对比,结合矿床地质特征认为黄岗梁铁锡矿床中闪锌矿属于与燕山期岩浆作用有关的中高温矽卡型闪锌矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号