首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

2.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

3.
A newly recognized remnant of a Paleoproterozoic Large Igneous Province has been identified in the southern Bastar craton and nearby Cuddapah basin from the adjacent Dharwar craton, India. High precision U–Pb dates of 1891.1 ± 0.9 Ma (baddeleyite) and 1883.0 ± 1.4 Ma (baddeleyite and zircon) for two SE-trending mafic dykes from the BD2 dyke swarm, southern Bastar craton, and 1885.4 ± 3.1 Ma (baddeleyite) for a mafic sill from the Cuddapah basin, indicate the existence of 1891–1883 Ma mafic magmatism that spans an area of at least 90,000 km2 in the south Indian shield.This record of 1.9 Ga mafic/ultramafic magmatism associated with concomitant intracontinental rifting and basin development preserved along much of the south-eastern margin of the south Indian shield is a widespread geologic phenomenon on Earth. Similar periods of intraplate mafic/ultramafic magmatism occur along the margin of the Superior craton in North America (1.88 Ga Molson large igneous province) and in southern Africa along the northern margin of the Kaapvaal craton (1.88–1.87 Ga dolerite sills intruding the Waterberg Group). Existing paleomagnetic data for the Molson and Waterberg 1.88 Ga large igneous provinces indicate that the Superior and Kalahari cratons were at similar paleolatitudes at 1.88 Ga but a paleocontinental reconstruction at this time involving these cratons is impeded by the lack of a robust geological pin such as a Limpopo-like 2.0 Ga deformation zone in the Superior Province. The widespread occurrence of 1.88 Ga intraplate and plate margin mafic magmatism and basin development in numerous Archean cratons worldwide likely reflects a period of global-scale mantle upwelling or enhanced mantle plume activity at this time.  相似文献   

4.
Recent U–Pb age determinations and PT estimates allow us to characterize the different levels of a formerly thickened crust, and provide further constraints on the make up and tectono-thermal evolution of the Grenville Province in the Manicouagan area. An important tectonic element, the Manicouagan Imbricate zone (MIZ), consists of mainly 1.65, 1.48 and 1.17 Ga igneous rocks metamorphosed under 1400–1800 MPa and 800–900 °C at 1.05–1.03 Ga, during the Ottawan episode of the Grenvillian orogenic cycle, coevally with intrusion of gabbro dykes in shear zones. The MIZ has been interpreted as representing thermally weakened deep levels of thickened crust extruded towards the NW over a parautochthonous crustal-scale ramp. Mantle-derived melts are considered as in part responsible for the high metamorphic temperatures that were registered.New data show that mid-crustal levels structurally above the MIZ are represented by the Gabriel Complex of the Berthé terrane, that consists of migmatite with boudins of 1136±15 Ma gabbro and rafts of anatectic metapelite with an inherited monazite age at 1478±30 Ma. These rocks were metamorphosed at about the same time as the MIZ (metamorphic zircon in gabbro: 1046±2 Ma; single grains of monazite in anatectic metapelite: 1053±2 Ma) and under the same T range (800–900 °C) but at lower P conditions (1000–1100 MPa). They are mainly exposed in an antiformal culmination above a high-strain zone, which has tectonic lenses of high PT rocks from the MIZ and is intruded by synmetamorphic gabbroic rocks. This zone is interpreted as part of the hangingwall of the MIZ during extrusion. A gap of 400 MPa in metamorphic pressures between the tectonic lenses and the country rocks, together with the broad similarity in metamorphic ages, are consistent with rapid tectonic transport of the high PT rocks over a ramp prior to the incorporation of the mafic lenses in the hangingwall.Between the antiformal culmination of the Gabriel Complex and the MIZ 1.48 Ga old granulites of the Hart Jaune terrane are exposed. They are intruded by unmetamorphosed 1228±3 Ma gabbro sills and 1166±1 Ma anorthosite. Hart Jaune Terrane represents relatively high crustal levels that truncate the MIZ-Gabriel Complex contact and are preserved in a synformal structure.Farther south, the Gabriel Complex is overlain by the Banded Complex, a composite unit including 1403+32/−25 Ma granodiorite and 1238+16/−13−1202+40/−25 Ma granite. This unit has been metamorphosed under relatively low-P (800 MPa) granulite-facies conditions. Metamorphic U–Pb data, limited to zircon lower intercept ages (971±38 Ma and 996±27 Ma) and a titanite (990±5 Ma) age, are interpreted to postdate the metamorphic peak.The general configuration of units along the section is consistent with extrusion of the MIZ during shortening and, finally, normal displacement along discrete shear zones.  相似文献   

5.
Single grain U–Pb ages of sediments from the Beipiao Basin, Northeast China were conducted to determine the evolution of basin provenance. Zircons from a sandstone in the Upper Triassic Laohugou Formation yield a wide range of ages and, according to their U–Pb ages, fall into four groups: 209.3±4.0–304.2±4.9, 1565.5±71–2154±50, 2400±35–2499±9, 2512±11–2557±74 Ma. These ages indicate that the zircons were principally derived from Late Archean, Proterozoic and Late Paleozoic plutonic rocks. Intrusions in the Mongolian Accretion Belt and the northern margin of the North China Block (NCB) were probably the main source of the sediments in the basin, but the easterly Liaodong Block also provided minor detrital material, with lower U–Pb ages, during the Late Triassic. Most of the U–Pb ages from zircons collected from a sandstone in the Lower Jurassic Beipiao Formation range from 194.3±2.9 to 233.8±4.2 Ma, reflecting the major sediment source during the Early Jurassic. Zircons derived from Late Indosinian plutonic rocks increased, which suggests that the detritus was supplied mainly from the interior of the Yan-Liao Orogenic Belt, especially from the Liaodong Block. Late Indosinian zircons (200–230 Ma) were eroded and deposited in the Lower Jurassic Beipiao Formation, and this implies that intensive tectonic activation and uplift of the Yan-Liao Orogenic Belt in the Mesozoic commenced in the Late Indosinian.  相似文献   

6.
New U–Pb and Rb–Sr geochronology on syn- and post-orogenic granites provide constraints on the timing of major tectonic events in the Songpan–Garzê fold belt, west Sichuan, China. The Ma Nai granite was probably syn-kinematic with the main deformation and yields an age of 197±6 Ma that is interpreted as an upper age limit of the Indosinian event. Zircons and apatites from the post-kinematic Rilonguan granite also yield Jurassic ages (195±6 and 181±4 Ma). The post-orogenic Markam massif gives two ages of 188±1 and 153±3 Ma. Both granites are undeformed and cut structures in the Triassic sedimentary rocks. These results demonstrate that the major deformation and décollement tectonics in the Songpan–Garzê fold belt occurred prior to the Early Jurassic. The wide range of ages obtained for post-kinematic granites (from Early Jurassic to Late Jurassic) suggests that, locally, magmatic activity persisted for a long time (at least 50 Ma) after the Indosinian compressional tectonism. No Tertiary ages have been obtained, suggesting that these granites were not affected strongly by the India–Asia collision.  相似文献   

7.
The Quérigut mafic–felsic rock association comprisestwo main magma series. The first is felsic comprising a granodiorite–tonalite,a monzogranite and a biotite granite. The second is intermediateto ultramafic, forming small diorite and gabbro intrusions associatedwith hornblendites and olivine hornblendites. A U–Pb zirconage of 307 ± 2 Ma was obtained from the granodiorite–tonalites.Contact metamorphic minerals in the thermal aureole providea maximum emplacement pressure of between 260 and 270 MPa. Petrographiccharacteristics of the mafic and ultramafic rocks suggest crystallizationat <300 MPa, demonstrating that mantle-derived magmas ascendedto shallow levels in the Pyrenean crust during Variscan times.The ultramafic rocks are the most isotopically primitive components,with textural and geochemical features of cumulates from hydrousbasaltic magmas. None of the mafic to ultramafic rocks havedepleted mantle isotope signatures, indicating crustal contaminationor derivation from enriched mantle. Origins for the dioritesinclude accumulation from granodiorite–tonalite magma,derivatives from mafic magmas, or hybrids. The granitic rockswere formed from broadly Proterozoic meta-igneous crustal protoliths.The isotopic signatures, mineralogy and geochemistry of thegranodiorite–tonalites and monzogranites suggest crystallizationfrom different magmas with similar time-integrated Rb/Sr andSm/Nd isotope ratios, or that the granodiorite–tonalitesare cumulates from a granodioritic to monzogranitic parent.The biotite granite differs from the other felsic rocks, representinga separate magma batch. Ages for Quérigut and other Pyreneangranitoids show that post-collisional wrenching in this partof the Variscides was under way by 310 Ma. KEY WORDS: Variscan orogeny; Pyrenees; Quérigut complex; epizonal magmatism; post-thickening; mafic–felsic association  相似文献   

8.
史文全  代文军 《甘肃地质》2008,17(1):13-16,22
四顶黑山岩体主要由超镁铁质岩和镁铁质岩组成。超镁铁质岩由橄榄岩、角闪橄榄岩、辉橄岩、辉石岩等组成;镁铁质岩由辉长岩、角闪辉长岩、橄榄辉长岩等组成。本次对辉长岩进行了全岩Sm-Nd同位素分析,得到的等时线年龄为327±9.0Ma,初始εNd(t)=+3.97,表明镁铁质—超镁铁质岩中辉长岩形成于早石炭世末。属于富集地幔向亏损地幔过渡类型。这一年龄的确定,为探讨北山—天山结合部晚古生代镁铁质—超镁铁质岩的成因机制和该区的区域地质演化提供了有效的年代学依据。  相似文献   

9.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif shared a common geological history throughout the Neoproterozoic and Cambrian with the Avalonian–Cadomian terranes. The Neoproterozoic evolution of an active plate margin in the Teplá–Barrandian is similar to Avalonian rocks in Newfoundland, whereas the Cambrian transtension and related calc-alkaline plutons are reminiscent of the Cadomian Ossa–Morena Zone and the Armorican Massif in western Europe. The Neoproterozoic evolution of the Teplá–Barrandian unit fits well with that of the Lausitz area (Saxothuringian unit), but is significantly distinct from the history of the Moravo–Silesian unit.The oldest volcanic activity in the Bohemian Massif is dated at 609+17/−19 Ma (U–Pb upper intercept). Subduction-related volcanic rocks have been dated from 585±7 to 568±3 Ma (lower intercept, rhyolite boulders), which pre-dates the age of sedimentation of the Cadomian flysch ( t chovice Group). Accretion, uplift and erosion of the volcanic arc is documented by the Neoproterozoic Dob í conglomerate of the upper part of the flysch. The intrusion age of 541+7/−8 Ma from the Zgorzelec granodiorite is interpreted as a minimum age of the Neoproterozoic sequence. The Neoproterozoic crust was tilted and subsequently early Cambrian intrusions dated at 522±2 Ma (T ovice granite), 524±3 Ma (V epadly granodiorite), 523±3 Ma (Smr ovice tonalite), 523±1 Ma (Smr ovice gabbro) and 524±0.8 Ma (Orlovice gabbro) were emplaced into transtensive shear zones.  相似文献   

10.
Sediment-hosted base metal sulfide deposits in the Otavi Mountain Land occur in most stratigraphic units of the Neoproterozoic Damara Supergroup, including the basal Nosib Group, the middle Otavi Group and the uppermost Mulden Group. Deposits like Tsumeb (Pb–Cu–Zn–Ge), Kombat (Cu–Pb–Zn), Berg Aukas (Zn–Pb–V), Abenab West (Pb–Zn–V) all occur in Otavi Group dolostones, whereas siliciclastic and metavolcanic rocks host Cu–(Ag) or Cu–(Au) mineralization, respectively. The Tsumeb deposit appears to have been concentrated after the peak of the Damara orogeny at around 530 Ma as indicated by radiometric age data.Volcanic hosted Cu–(Au) deposits (Neuwerk and Askevold) in the Askevold Formation may be related to ore forming processes during continental rifting around 746 Ma. The timing of carbonate-hosted Pb–Zn deposits in the Abenab Subgroup at Berg Aukas and Abenab is not well constrained, but the stable (S, O, C) and Pb isotope as well as the ore fluid characteristics are similar to the Tsumeb-type ores. Regional scale ore fluid migration typical of MVT deposits is indicated by the presence of Pb–Zn occurrences over 2500 km2 within stratabound breccias of the Elandshoek Formation. Mulden Group siliciclastic rocks host the relatively young stratiform Cu–(Ag) Tschudi resource, which is comparable to Copperbelt-type sulfide ores.  相似文献   

11.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

12.
The metaturbidites of the Palaeoproterozoic Jormua–Outokumpu thrust belt in eastern Finland enclose m- to km-scale ultramafic massifs that are distributed over an area of more than 5000 km2. These bodies, which almost entirely consist of highly depleted mantle peridotites (now metaserpentinites and metaperidotites), are intimately associated with massive to semimassive, polymetallic Cu–Co–Zn–Ni–Ag–Au sulphide deposits that sustained mining in the region between 1913 and 1988. Currently, one deposit (Kylylahti) is proceeding into a definitive feasibility study emphasising the renewed economic interest for Outokumpu-type deposits.The origin of these Outokumpu-type Cu–Co–Zn–Ni–Ag–Au deposits is now re-interpreted to be polygenetic. First, their formation requires deposition of a Cu-rich proto-ore within peridotitic sea floor at  1950 Ma. Close modern analogues to the proto-ore setting include, for example, the Logatchev and Rainbow fields at the Mid-Atlantic Ridge, where venting of high-T–low-pH hydrothermal fluid resulted in accumulations of Cu–Zn–Co–Ag–Au sulphides on serpentinised ultramafic seafloor. Second, the Ni-rich composition of Outokumpu sulphide ores calls for a separate source for nickel: Some 40 Ma after the deposition of the Cu-rich proto-ore – concomitant with the obduction of the ultramafic massifs – disseminated Ni sulphides formed through chemical interaction between obducting peridotite massifs and adjacent black schists. This process was related to listwaenite–birbirite type carbonate–silica alteration at margins of the ultramafic massifs. Due to this alteration, silicate nickel was released from the primary Fe–Mg silicates and redeposited as Ni sulphides in the alteration fringes of the massifs.We propose that syntectonic mixing of these two “end-member” sulphides, i.e., the primary Cu-rich proto-ore and the secondary Ni-sulphide disseminations, resulted in the uncommon metal combination of the Outokumpu-type sulphides. Late tectonic solid-state re-mobilisation, related to the duplexing of the ore by isoclinal folding, upgraded the sulphides into economic deposits.  相似文献   

13.
SHRIMP U–Pb zircon dating of gabbro, anorthosite, trondhjemite and granodiorite from the Jinshajiang ophiolitic mélange of southwestern China provides geochronological constraints on the evolution of Paleo-Tethys. The ophiolitic mélange is exposed for about 130 km along the Jinshajiang River where numerous blocks of serpentinite, ultramafic cumulate, gabbro, sheeted dikes, pillow lavas and radiolarian chert are set in a greenschist matrix. A cumulate gabbro-anorthosite association and an amphibole gabbro have ages of 338 ± 6 Ma, 329 ± 7 Ma and 320 ± 10 Ma, respectively, which constrain the time of formation of oceanic crust. An ophiolitic isotropic gabbro dated at 282–285 Ma has the same age as a trondhjemite vein (285 ± 6 Ma) cutting the gabbro. These ages probably reflect a late phase of sea-floor spreading above an intra-oceanic subduction zone. At the southern end of the Jinshajiang belt, a granitoid batholith (268 ± 6 Ma), a gabbro massif (264 ± 4 Ma), and a granodiorite (adakite) intrusion (263 ± 6 Ma) in the ophiolitic mélange constitute a Permian intra-oceanic plutonic arc complex. A trondhjemite dike intruded serpentinite in the mélange at 238 ± 10 Ma and postdates the arc evolution of the Jinshajiang segment of Paleo-Tethys.  相似文献   

14.
《International Geology Review》2012,54(10):1171-1188
ABSTRACT

The East Kunlun Orogenic Belt (EKOB) in northern Tibet provides an important record of the amalgamation of the Wanbaogou oceanic basalt plateau and the Qaidam Block. Here we report geochemical, geochronological, and Hf isotopic data for newly identified late Silurian–Early Devonian mafic–ultramafic igneous complexes from the EKOB at the northern margin of the Tibetan Plateau. These complexes are dominantly composed of gabbro and pyroxenite rocks. Three complexes yield zircon U–Pb ages of 398.8 ± 1.8, 420.2 ± 1.2, and 413.4 ± 0.78 Ma. The εHf(t) values of zircons range from +0.8 to +3.3 with TDM1 ages of 897 to 998 Ma. Modelling of the geochemical data indicates that these igneous complexes have a hybrid origin, involving depleted mantle fluids derived from a previous subduction event and crustal materials. The geochemical and geochronological data suggest that these complexes formed in a post-collisional setting linked to break-off of a subducted oceanic slab, which occurred after the Wanbaogou oceanic basalt plateau amalgamated with the Qaidam Block in the late Silurian–Early Devonian.  相似文献   

15.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

16.
吉林红旗岭铜镍矿床的地质特征及成因   总被引:6,自引:0,他引:6  
红旗岭铜镍矿床地处华北地台和吉黑地槽系接触带———辉发河断裂带内 ,属大型铜镍硫化物矿床。矿区出露地层为下元古界呼兰群变质岩系。呈北东向展布的辉发河断裂具有切割深度大、继承性活动频繁等特征 ,由该断裂构造活动派生的北西向构造构成区域性重要的控岩控矿构造 ,控制超镁铁、镁铁质岩体及铜镍硫化物矿体在空间上呈北西向产出。与铜镍矿成矿有关的岩体具有复合杂岩体特征 ,多属辉长岩—辉石岩—橄榄岩型镁铁—超镁铁质岩。铜镍矿体呈似板状、脉状、透镜状及囊状等赋存于镁铁—超镁铁质岩体内。岩矿石微量元素特征、稀土元素地球化学特征均反映其为地幔部分熔融作用的产物 ,且矿石与镁铁—超镁铁质岩具同源性 ,矿床属岩浆深部熔离分异成因  相似文献   

17.
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced  600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at  730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and  730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

18.
The Rio das Velhas greenstone belt is located in the Quadrilátero Ferrífero region, in the southern extremity of the São Francisco Craton, central-southern part of the State of Minas Gerais, SE Brazil. The metavolcano–sedimentary rocks of the Rio das Velhas Supergroup in this region are subdivided into the Nova Lima and Maquiné Groups. The former occurs at the base of the sequence, and contains the major Au deposits of the region. New geochronological data, along with a review of geochemical data for volcanic and sedimentary rocks, suggest at least two generations of greenstone belts, dated at 2900 and 2780 Ma. Seven lithofacies associations are identified, from bottom to top, encompassing (1) mafic–ultramafic volcanic; (2) volcano–chemical–sedimentary; (3) clastic–chemical–sedimentary, (4) volcaniclastic association with four lithofacies: monomictic and polymictic breccias, conglomerate–graywacke, graywacke–sandstone, graywacke–argillite; (5) resedimented association, including three sequences of graywacke–argillite, in the north and eastern, at greenschist facies and in the south, at amphibolite metamorphic facies; (6) coastal association with four lithofacies: sandstone with medium- to large-scale cross-bedding, sandstone with ripple marks, sandstone with herringbone cross-bedding, sandstone–siltstone; (7) non-marine association with the lithofacies: conglomerate–sandstone, coarse-grained sandstone, fine- to medium-grained sandstone. Four generations of structures are recognized: the first and second are Archean and compressional, driven from NNE to SSW; the third is extensional and attributed to the Paleoproterozoic Transamazonian Orogenic Cycle; and the fourth is compressional, driven from E to W, is related to the Neoproterozoic Brasiliano Orogenic Cycle. Gold deposits in the Rio das Velhas greenstone belt are structurally controlled and occur associated with hydrothermal alterations along Archean thrust shear zones of the second generation of structures.Sedimentation occurred during four episodes. Cycle 1 is interpreted to have occurred between 2800 and 2780 Ma, based on the ages of the mafic and felsic volcanism, and comprises predominantly chemical sedimentary rocks intercalated with mafic–ultramafic volcanic flows. It includes the volcano–chemical–sedimentary lithofacies association and part of the mafic–ultramafic volcanic association. The cycle is related to the initial extensional stage of the greenstone belt formation, with the deposition of sediments contemporaneous with volcanic flows that formed the submarine mafic plains. Cycle 2 encompasses the clastic–chemical–sedimentary association and distal turbidites of the resedimented association, in the eastern sector of the Quadrilátero Ferrífero. It was deposited in the initial stages of the felsic volcanism. Cycle 2 includes the coastal and resedimented associations in the southern sector, in advanced stages of subduction. In this southern sedimentary cycle it is also possible to recognize a stable shelf environment. Following the felsic volcanism, Cycle 3 comprises sedimentary rocks of the volcaniclastic and resedimented lithofacies associations, largely in the northern sector of the area. The characteristics of both associations indicate a submarine fan environment transitional to non-marine successions related to felsic volcanic edifices and related to the formation of island arcs. Cycle 4 is made up of clastic sedimentary rocks belonging to the non-marine lithofacies association. They are interpreted as braided plain and alluvial fan deposits in a retroarc foreland basin with the supply of debris from the previous cycles.  相似文献   

19.
Abstract  Abundant small mafic intrusions occur associated with granitoids along the Gangdisê magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro‐pyroxenite zone occurs along the southern margin of the Gangdisê belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends ~1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdisê gabbro‐pyroxenite assemblage is most likely a result of underplating of mantle‐derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa‐Xigazê segment of the mafic intrusive zone, and was followed by zircon SHRIMP II U‐Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3 Ma, 52.5±3.0 Ma, 50.2±4.2 Ma and 49.9±1.1 Ma. The range of these ages (47–52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdisê belt at ca. 50 Ma. This underplating event post‐dated the initiation of the India‐Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP II U‐Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479–526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre‐existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian‐Eurasia collision, possibly corresponding in time to the formation of the 14–16 km‐thick “crust‐mantle transitional zone” characterized by Vp = 6.85–6.9 km/s.  相似文献   

20.
The petrogenesis and geodynamic setting of the Early Permian mafic–ultramafic complexes in the Beishan Terrane, NW China have important bearing on the prospects of Ni–Cu–PGE sulfide and Ti–Fe oxide deposits, as well as in understanding the history of evolution of the southern Central Asian Orogenic Belt (CAOB). Here we present results from a detailed study on a representative suit of a mafic–ultramafic rocks from the Bijiashan complex in the Beishan Terrane. The complex is composed of dunite, troctolite, olivine gabbro and gabbro without clinopyroxenite or hornblendite. In addition to olivine and clinopyroxene, orthopyroxene and plagioclase are also present in all these rock types, in the absence of chromite or primary hornblende. The minerals display marked compositional variations with the Fo content in olivines ranging from 66 to 83 and the clinopyroxenes ranging from diopside to augite. The whole-rock geochemistry shows good correlations among the major elements, and the trace elements are characterized by flat REE patterns with Eu positive anomalies, and HFSE depletion relative to LILE. These features are comparable to other mafic–ultramafic complexes in the Beishan and Eastern Tianshan terranes, but obviously deviate from the typical features of Alaskan-type intrusives. The present study suggests that the Beishan complexes were formed in a post-orogenic extensional environment with potential for Ni–Cu mineralization, rather than in arc-related setting with Alaskan-type PGE mineralization. Our study confirms that the Beishan area does not conform to an arc-related setting, but was located within a rift setting in Permian probably related to Permian mantle plume event, suggesting that the subduction of the Paleo-Asian ocean had culminated by this time, and the southern CAOB witnessed a post-orogenic extensional regime in late Paleozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号