首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
极浅海域潮流数值模型   总被引:9,自引:0,他引:9  
通过对以往的浅水环流数值模型进行改进,建立适用于极浅水域的且能达到较高分辨率的潮汐环流数值模型。模型的主要特点是:(1)通过改进海底摩擦项的表达式来克服传统的二次方律在极浅的潮滩区所产生的不稳定问题;(2)采用逆风格式处理动量方程中的平流项,有效地抑制由于岸边界移动引起的数值短波的扩散。结合老虎滩湾海上工程的需要,利用本模型进行一系列的数值模拟试验。经过实测资料验证表明,改进后的模型具有良好的稳定  相似文献   

2.
采用三维浅海湖波定解方程组,建立番禺附近海域的三维潮流数值模型来计算潮流和潮位变化情况,开边界采用调和常数计算的水位来驱动,潮流和潮位验证结果较好,模拟结果较真实的反应了番禺附近海域的潮流和潮位情况.在潮流模拟验证正确的前提下,建立溢油预测数值模型,采用欧拉-拉格朗日追踪方法,对油膜中心轨迹进行预测,并预测出油膜的平均...  相似文献   

3.
采用潮流控制方程和湍封闭方程构建完整的三维浅海潮波定解方程组,建立涠洲岛附近海域的三维潮流数值模型来计算涠洲岛附近海域的潮流和潮位变化情况,采用大海域计算得出的调和常数值作为开边界的输入值,从潮位验证、潮流验证和流场的变化规律等多方面情况看,计算结果与实际监测符合良好,具有较高的精确度,模拟计算结果较真实地反映了涠洲岛附近海域的潮位变化和潮流运动状况.在潮流模拟验证正确的情况下,建立溢油预测模型,采用欧拉-拉格朗日追踪方法,进行油膜中心轨迹的预测,并预测了油膜漂移的扩展面积、扫海面积和残留量随时间的变化值.  相似文献   

4.
The numerical method of lines(MOLs) in coordination with the classical fourth-order Runge-Kutta(RK(4, 4))method is used to solve shallow water equations(SWEs) for foreseeing water levels owing to the nonlinear interaction of tide and surge accompanying with a storm along the coast of Bangladesh. The SWEs are developed by extending the body forces with tide generating forces(TGFs). Spatial variables of the SWEs along with the boundary conditions are approximated by means of finite difference technique on an Arakawa C-grid to attain a system of ordinary differential equations(ODEs) of initial valued in time, which are being solved with the aid of the RK(4, 4)method. Nested grid technique is adopted to solve coastal complexities closely with least computational cost. A stable tidal solution in the region of our choice is produced by applying the tidal forcing with the major tidal constituent M2(lunar semi-diurnal) along the southern open-sea boundary of the outer scheme. Numerical experimentations are carried out to simulate water levels generated by the cyclonic storm AILA along the coast of Bangladesh. The model simulated results are found to be in a reasonable agreement with the limited available reported data and observations.  相似文献   

5.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

6.
许朋柱  毛锐 《海洋与湖沼》1993,24(1):109-113
为了能够精确地拟合天然水域不规则的水陆边界,并能保持有限差分数值计算在矩形网格中进行,本文利用Thompson的数值网格生成技术,在长江口南支七丫口至横沙河段设计了一个椭圆型边界拟合坐标系,并在这个坐标系下建立了平面二维潮流数学模型。通过数值求解此数学模型,实现了计算区域内现状潮流的一个数值模拟,模拟结果表明,模式的设计是成功的。  相似文献   

7.
Jiankang Wu  Bo Chen 《Ocean Engineering》2003,30(15):1899-1913
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow , and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when , the frequency dispersion can be neglected in supercritical flows.  相似文献   

8.
根据湍流封闭理论,建立一种适用于正压浅海湍流运动的雷诺应力封闭模型(RSM),以代替目前三维浅海动力学模型中普遍采用的湍粘性系数的传统假设。通过直接建立并模化f—平面上正压海洋的雷诺应力传输方程,分别得到的微分形式和代数形式的RSM方程组。并讨论了进行数值计算所需要的边界条件。利用该模型可以进一步研究浅海潮流、风暴潮流及风海流等浅海流动的三维结构和湍流特性。  相似文献   

9.
迎风有限元法在三维潮流数值模拟中的应用   总被引:4,自引:0,他引:4  
董文军  陈虹 《海洋与湖沼》1997,28(3):320-327
为研究和开发迎风有限元法在河口海岸三维波数值模拟中的应用,并为建立三维物质扩散模型,最终为解决实际工程问题打下基础,以非线性浅水波方程为基础,采用一咱平面迎风有奶元与垂向工有限差分相结合地数值计算方法建立三维潮流数学模型,基地实际的物理过程,在计算中将三维流动分成外重力波和内重力波,耦联求解潮位和流速的空间分布。应用本模式计算了天津新港附近渤海海域的三维潮流运动,以较高的分辩率揭示了潮流空间结构特  相似文献   

10.
象山港水交换数值研究──Ⅰ.对流-扩散型的水交换模式   总被引:9,自引:2,他引:7  
以溶解态的保守性物质作为湾内水的示踪剂,建立了对流-扩散型的海湾水交换数值模型。数值模型使用参数化的方法把重力环流和潮振荡的垂向剪切作用的水平混合效应包纳在水平二维的示踪剂对流-扩散方程中。在空间网距较小时,模型的稳定性和守恒性均可满足海湾水交换研究的需要。  相似文献   

11.
ABFGmodelforcalculationoftidalcurrentanddiffusionofpollutantsinnearshoreareas¥ShiFengyan;andZheng;Lianyuan(StateKeyLaboratory...  相似文献   

12.
-Wave refraction-diffraction due to a large ocean structure and topography in the presence of a 'current are studied numerically. The mathematical model is the mild-slope equation developed by Kirby (1984). This equation is solved using a finite and boundary element method. The physical domain is devid-ed into two regions: a slowly varying topography region and a constant water depth region. For waves propagating in the constant water depth region, without current interfering, the mild- slope equation is then reduced to the Helmholtz equation which is solved by boundary element method. In varying topography region, this equation will be solved by finite element method. Conservation of mass and energy flux of the fluid between these two regions is required for composition of these two numerical methods. The numerical scheme proposed here is capable of dealing with water wave problems of different water depths with the main characters of these two methods.  相似文献   

13.
江苏大丰地区潮滩由于水深较浅,潮流、波浪等动力较强,整个水层可视为边界层,其主体部分是对数层,即水流流速在垂向上呈对数分布。在潮流的加减速阶段,流速剖面将可能偏离对数分布,从而使对数剖面法计算出来的边界层参数造成误差。使用MIDAS-400用户化数据采集系统,在大丰潮滩获得了多层流速、浊度等同步高频观测数据,基于修正后的von Karman-Prandtl模型对u-lnz进行回归分析、数据内部一致性分析来定义流速对数剖面并与未修正前经典理论得到的边界层参数进行比较。分析结果表明,修正后的流速剖面更符合实际情况,边界层参数除了受水流加速度的影响外,还和沙纹等因素有关。另外,边界层参数的变化量与特征加速度负相关。  相似文献   

14.
Based on the theory of characteristics, this research elaborates on the numerical treatment of two types of seaward boundary conditions for modelling long-wave dynamics in truncated estuarine and coastal domains. These seaward boundary conditions are devised for the solution of the fully non-linear shallow water equations in the time domain. The first type is the clamped boundary, at which the water level variation is given and the velocity is computed along the characteristic line going out of the domain. The second type is the non-reflecting boundary, where the incident wave information is introduced and the reflected waves from inside the computational domain are allowed to escape at the same time. The essence of its numerical implementation is to distinguish the inward and outward characteristics and to disconnect the incoming characteristic relation from the actual flow inside the domain. Compared with previous techniques, the present method includes extra terms in the derivation to account for the effects of the uneven bed, bottom friction and shape of the characteristic lines. A shock-capturing finite difference method is used to solve the shallow water equations in the deviatoric format, but the seaward boundary algorithms constructed herein are generic and applicable to other solvers. The necessity of these refinements is highlighted by simulating the tidal oscillation in the Persian/Arabian Gulf, periodic wave runup on the coastline and the wave resonance in a narrow harbour. It is found that neglecting the bed slope at the boundary may result in biased mean water levels in the prediction.  相似文献   

15.
厦门海域浅水三维潮流场动力学模型   总被引:2,自引:0,他引:2       下载免费PDF全文
基于Casulli的三维浅水模型,改进浅滩处理方法,并入简化的紊流闭合模型,形成完整的海洋动力学基本方程组,改进了紊流闭合模型的求解方法,动力学模拟结果与实测结果符合良好,海域中大量浅滩的干出与淹没的面积和位置与实际情况吻合良好.本模型是厦门海域海洋动力学理论研究中第一个完全的三维斜压潮流场模型,全部程序用FORTRAN语言独立开发和编写.  相似文献   

16.
A boundary integral equation method (BIEM) model and three differently formulated finite element method (FEM) models were implemented to explore the spatial and temporal patterns in marsh pore water seepage that each generated. The BIEM model is based on the Laplace equation coupled to a dynamic free-surface condition that assumes that, as the water-table changes, the aquifer instantaneously loses or gains an amount of water equal to the change in head times the specific yield. The FEM models all implement a simplified Richards equation that allows gradual desaturation or resaturation and thus flow in both the saturated and unsaturated zones of the aquifer. Two of the FEM models are based on the governing equation for the USGS model SUTRA and thus take into account fluid and aquifer compressibility. One of these was modified to take into account the effect of tidal loading on the total stress, which is assumed to be constant in the derivation of the original version of SUTRA. The third FEM model assumes that neither the fluid or aquifer matrix is compressible so that changes in storage are due solely to changes in saturation. The unmodified SUTRA model generated instantaneous boundary fluxes that were up to two orders of magnitude greater, and spatially more uniform, than those of the other models. The FEM model without compressibility generated spatial and temporal patterns of the boundary fluxes very similar to those produced by the BIEM model. The SUTRA model with the tidal stress modification gave fluxes similar in magnitude to the BIEM and no compressibility models but with distinctly different distributions in space and time. These results indicate that accurate simulation of seepage from marsh soils is highly sensitive to aquifer compressibility and to proper formulation of the effect of tidal loading on the total stress in the aquifer. They also suggest that accurate simulation may require total stress correction not only for tidal loading but for changes in the water table as well. Finally, to aid the development of methods for the measurement of compressibility, we present a schematic, pore-scale model to illustrate the factors that may govern the compressibility of marsh soils.  相似文献   

17.
辐射沙脊群潮滩地形遥感遥测构建   总被引:3,自引:2,他引:1  
潮滩地形是合理开发利用潮间带滩涂最重要的指标之一。滩涂水边线测量法是目前公认的具有可操作性的滩涂地形遥感测量方法。本文以水边线测量方法为基础,提出一种基于水位测站基线的潮滩地形遥感遥测构建方法。以江苏沿海大面积潮滩为研究区,将该区域自建的4座水位测站的连线作为水位测站基线,结合不同潮情下采集的遥感影像提取的滩涂水边线数据,通过水位测站基线计算滩涂水边线高程,从而构建出辐射沙脊群潮滩地形。采用实测地形数据进行检验,结果表明:构建的DEM能够反应当前潮滩的基本形态,平面精度达30 m,垂直精度达20 cm。  相似文献   

18.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

19.
Wave Numerical Model for Shallow Water   总被引:4,自引:0,他引:4  
The history of forecasting wind waves by wave energy conservation equation is briefly des-cribed.Several currently used wave numerical models for shallow water based on different wave theoriesare discussed.Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model,which takes use of the most advanced wave research achieve-ments and has been applied to several theoretical and field conditions.The characteristics and applicabilityof the model,the finite difference numerical scheme of the action balance equation and its source termscomputing methods are described in detail.The model has been verified with the propagation refractionnumerical experiments for waves propagating in following and opposing currents;finally.the model is ap-plied to the Haian Gulf area to simulate the wave height and wave period field there,and the results arecompared with observed data.  相似文献   

20.
大小潮作用对潮滩沉积物层理影响的数值模拟研究   总被引:1,自引:1,他引:0  
潮滩垂向沉积韵律层的形成主要取决于周期性的潮汐条件,包括涨落潮、大小潮、季节性及更长时间尺度的潮汐特征,为探究大小潮周期对潮滩沉积物垂向层理形成机制的影响,应用一维潮流泥沙与底床分层数学模型,对周期性潮汐条件作用下潮滩垂向沉积韵律层形成机制进行了数值模拟研究。结果表明,大小潮的周期性是模型中沉积层理表现韵律性的主要原因之一,韵律层中单个层理结构对应于1个大小潮周期过程,层理结构由形成于小潮期间的泥质层及形成于大潮期间的砂质层组成,层理的厚度也呈旋回性变化,大潮时层理较厚而小潮时层理较薄。水体边界含沙量是影响潮汐层理结构的重要因子,边界含沙量中粉砂占比增大会使潮汐韵律层整体粗化且砂质层厚度增大,当边界含沙量整体显著增大时,潮滩上的垂向潮汐韵律层会更加完整且厚度明显增大。潮汐层理的形成与特征是多种因子共同作用的结果,后续需进一步探究包括波浪、风暴潮、潮滩生物等其他因子的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号