首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne laser scanning (ALS) is an active remote sensing technique providing range data as 3D point clouds. This paper aims at presenting a survey of the literature related to such techniques, with emphasis on the new sensors called full-waveform lidar systems. Indeed, an emitted laser pulse interacts with complex natural and man-made objects leading to a temporal distortion of the returned energy profile. The new technology of full-waveform laser scanning systems permits one to digitize the complete waveform of each backscattered pulse. Full-waveform lidar data give more control to an end user in the interpretation process of the physical measurement and provide additional information about the structure and the physical backscattering characteristics of the illuminated surfaces. In this paper, the theoretical principles of full-waveform airborne laser scanning are first described. Afterwards, a review of the main sensors as well as signal processing techniques are presented. We then discuss the interpretation of full-waveform measures with special interest on vegetated and urban areas.  相似文献   

2.
对目标空间三维—光谱信息的高分辨一体化获取与应用,是对地观测技术发展的前沿科学问题.结合高光谱成像与激光雷达测距的技术优势,对地观测多光谱/高光谱激光雷达遥感技术手段应运而生,并成为遥感技术未来发展的重要方向.本文分3个阶段详细回顾了对地观测高光谱激光雷达系统的发展历程,并针对其独有数据类型阐述了数据处理研究方面的探索...  相似文献   

3.
Full-waveform topographic LiDAR data provide more detailed information about objects along the path of a laser pulse than discrete-return (echo) topographic LiDAR data. Full-waveform topographic LiDAR data consist of a succession of cross-section profiles of landscapes and each waveform can be decomposed into a sum of echoes. The echo number reveals critical information in classifying land cover types. Most land covers contain one echo, whereas topographic LiDAR data in trees and roof edges contained multi-echo waveform features. To identify land-cover types, waveform-based classifier was integrated single-echo and multi-echo classifiers for point cloud classification.The experimental area was the Namasha district of Southern Taiwan, and the land-cover objects were categorized as roads, trees (canopy), grass (grass and crop), bare (bare ground), and buildings (buildings and roof edges). Waveform features were analyzed with respect to the single- and multi-echo laser-path samples, and the critical waveform features were selected according to the Bhattacharyya distance. Next, waveform-based classifiers were performed using support vector machine (SVM) with the local, spatial features of waveform topographic LiDAR information, and optical image information. Results showed that by using fused waveform and optical information, the waveform-based classifiers achieved the highest overall accuracy in identifying land-cover point clouds among the models, especially when compared to an echo-based classifier.  相似文献   

4.
Airborne laser scanning (ALS) data are increasingly being used for land cover classification. The amplitudes of echoes from targets, available from full-waveform ALS data, have been found to be useful in the classification of land cover. However, the amplitude of an echo is dependent on various factors such as the range and incidence angle, which makes it difficult to develop a classification method which can be applied to full-waveform ALS data from different sites, scanning geometries and sensors. Additional information available from full-waveform ALS data, such as range and echo width, can be used for radiometric calibration, and to derive backscatter cross section. The backscatter cross section of a target is the physical cross sectional area of an idealised isotropic target, which has the same intensity as the selected target. The backscatter coefficient is the backscatter cross section per unit area. In this study, the amplitude, backscatter cross section and backscatter coefficient of echoes from ALS point cloud data collected from two different sites are analysed based on urban land cover classes. The application of decision tree classifiers developed using data from the first study area on the second demonstrates the advantage of using the backscatter coefficient in classification methods, along with spatial attributes. It is shown that the accuracy of classification of the second study area using the backscatter coefficient (kappa coefficient 0.89) is higher than those using the amplitude (kappa coefficient 0.67) or backscatter cross section (kappa coefficient 0.68). This attribute is especially useful for separating road and grass.  相似文献   

5.
全波形激光雷达的回波中携带了被测目标的距离与特征信息,为了获取这些信息,本文提出了一种回波分解方法。本方法将原始的全波形回波分解为几个独立的高斯脉冲,并得到其函数表达式,从而提取出被测目标的距离等信息。分解过程中,首先,采用可变阈值的经验模态分解滤波法(EMD-soft)对原始波形进行滤波和噪声水平评估;其次,采用一套应对多种波形组成的初始参数估计方法,获取后续拟合所需的初始参数;最后,采用LM(Levenberg-Marquardt)优化算法对回波进行拟合优化,从而获取全波形回波中包含的独立高斯脉冲及其函数表达式。仿真波形的分解实验表明,分解误差在0.1 ns量级,换算成距离误差为15 mm,通过实验室自制的全波形激光雷达实验系统获取的回波的分解实验表明,分解的距离误差小于0.1 m。对比另外两种高斯分解方法对于相同仿真与实验数据的分解结果可以看出,本方法在分解成功率与精度上都有较大的提高。回波分解后的独立高斯脉冲中,除距离外还含有被测目标的反射率、粗糙度、面型等丰富的信息,回波分解方法作为回波分析的基础,将在遥感、测绘等生产与科研领域中发挥非常重要的作用。  相似文献   

6.
Among the many means of acquiring surface information, low-altitude light detection and ranging (LiDAR) systems (e.g., unmanned aerial vehicle LiDAR, UAV-LiDAR) have become an important approach to accessing geospatial information. Considering the lower level of hardware technology in low-altitude LiDAR systems compared to that in airborne LiDAR, and the greater flexibility in-flight, registration procedures must be first performed to facilitate the fusion of laser point data and aerial images. The corner points and edges of buildings are frequently used for the automatic registration of aerial imagery with LiDAR data. Although aerial images and LiDAR data provide powerful support for building detection, adaptive edge detection for all types of building shapes is difficult. To deal with the weakness of building edge detection and reduce matching-related computation, the study presents a novel automatic registration method for aerial images, with LiDAR data, on the basis of main-road information in urban areas. Firstly, vector road centerlines are extracted from raw LiDAR data and then projected onto related aerial images with the use of coarse exterior orientation parameters (EOPs). Secondly, the corresponding image road features of each LiDAR vector road are determined using an improved total rectangle-matching approach. Finally, the endpoints of the conjugate road features obtained from the LiDAR data and aerial images are used as ground control points in space resection adjustment to refine the EOPs; an iterative strategy is used to obtain optimal matching results. Experimental results using road features verify the feasibility, robustness and accuracy of the proposed approach.  相似文献   

7.
The urban land cover mapping and automated extraction of building boundaries is a crucial step in generating three-dimensional city models. This study proposes an object-based point cloud labelling technique to semantically label light detection and ranging (LiDAR) data captured over an urban scene. Spectral data from multispectral images are also used to complement the geometrical information from LiDAR data. Initial object primitives are created using a modified colour-based region growing technique. Multiple classifier system is then applied on the features extracted from the segments for classification and also for reducing the subjectivity involved in the selection of classifier and improving the precision of the results. The proposed methodology produces two outputs: (i) urban land cover classes and (ii) buildings masks which are further reconstructed and vectorized into three-dimensional buildings footprints. Experiments carried out on three airborne LiDAR datasets show that the proposed technique successfully discriminates urban land covers and detect urban buildings.  相似文献   

8.
Wildlife habitat selection is determined by a wide range of factors including food availability, shelter, security and landscape heterogeneity all of which are closely related to the more readily mapped landcover types and disturbance regimes. Regional wildlife habitat studies often used moderate resolution multispectral satellite imagery for wall to wall mapping, because it offers a favourable mix of availability, cost and resolution. However, certain habitat characteristics such as canopy structure and topographic factors are not well discriminated with these passive, optical datasets. Airborne laser scanning (ALS) provides highly accurate three dimensional data on canopy structure and the underlying terrain, thereby offers significant enhancements to wildlife habitat mapping. In this paper, we introduce an approach to integrate ALS data and multispectral images to develop a new heuristic wildlife habitat classifier for western Alberta. Our method combines ALS direct measures of canopy height, and cover with optical estimates of species (conifer vs. deciduous) composition into a decision tree classifier for habitat – or landcover types. We believe this new approach is highly versatile and transferable, because class rules can be easily adapted for other species or functional groups. We discuss the implications of increased ALS availability for habitat mapping and wildlife management and provide recommendations for integrating multispectral and ALS data into wildlife management.  相似文献   

9.
Precise tree species classification with high density full-waveform LiDAR data is a key research topic for automated forest inventory. Most approaches constrain to geometric features and only a few consider intensity values. Since full-waveform data offers a much larger amount of deducible information this study explores a high number of parameter and feature combinations. Those variables having the highest impact on species differentiation are determined. To handle the large amount of airborne full-waveform data and to extract a comprehensive number of variable combinations an improved algorithm was developed. The full-waveform point parameters amplitude, width, range corrected intensity and total number of targets within a beam are transferred into raster covering a test site of 10 km2. It was possible to isolate the three most important variables based on the intensity, the width and the total number of targets. Up to six tree species were classified with an overall accuracy of 57%, limiting to the four main species accuracy was improved to 78% and constraining just to conifers and broadleaved trees even 91% could be classified correctly.  相似文献   

10.
In this letter, we present an approach to detecting trees in registered aerial image and range data obtained via lidar. The motivation for this problem comes from automated 3-D city modeling, in which such data are used to generate the models. Representing the trees in these models is problematic because the data are usually too sparsely sampled in tree regions to create an accurate 3-D model of the trees. Furthermore, including the tree data points interferes with the polygonization step of the building roof top models. Therefore, it is advantageous to detect and remove points that represent trees in both lidar and aerial imagery. In this letter, we propose a two-step method for tree detection consisting of segmentation followed by classification. The segmentation is done using a simple region-growing algorithm using weighted features from aerial image and lidar, such as height, texture map, height variation, and normal vector estimates. The weights for the features are determined using a learning method on random walks. The classification is done using the weighted support vector machines, allowing us to control the misclassification rate. The overall problem is formulated as a binary detection problem, and the results presented as receiver operating characteristic curves are shown to validate our approach  相似文献   

11.
融合形状和光谱的高空间分辨率遥感影像分类   总被引:13,自引:0,他引:13  
黄昕  张良培  李平湘 《遥感学报》2007,11(2):193-200
提出了一种像元形状指数及基于形状和光谱特征融合的高(空间)分辨率遥感影像分类方法。形状和光谱是遥感影像纹理的具体表现形式,尤其在高分辨率影像中地物细节得到充分表达,相邻像元的关系及其共同表征的形状特性成为分类的重要因素。本文用像元及其邻域的关系来描述其空间结构,同时为了更全面地利用影像特征,提出了基于支持向量机的形状和光谱融合分类方法。实验证明,该方法计算简便且能有效表达高分辨率影像的地物特征,提高分类精度。  相似文献   

12.
利用星载激光雷达的大光斑全波形数据估测植被结构参数、监测森林生态已受到广泛关注。为了更准确地理解森林植被的结构参数和光学特性对激光雷达回波波形的影响,利用实测森林植被数据提取植被空间分布的统计规律,考虑地形坡度变化和植被冠层反射特性的影响,生成参数化的森林植被空间轮廓反射模型,结合星载激光雷达的回波理论,建立了面向植被的星载激光雷达波形仿真器。由大兴安岭地区的实测植被数据提取的统计规律生成的森林目标仿真波形与地球科学激光测高仪系统(Geoscience Laser Altimeter System,GLAS)真实回波波形具有较好的一致性,平均相关系数R2达到0.91。通过波形仿真分析发现,光斑尺寸减小有利于大坡度地形的森林信息反演,研究成果对中国未来研制星载激光雷达载荷的系统参数设计具有参考意义。  相似文献   

13.
机载多光谱LiDAR的随机森林地物分类   总被引:1,自引:0,他引:1  
机载多光谱LiDAR技术利用激光进行探测和测距,不仅可以快速获取地面物体的三维坐标,还可以获得多个波段的地物光谱信息,可广泛用于地形测绘、土地覆盖分类、环境建模、森林资源调查等。本文提出了多光谱LiDAR的随机森林地物分类方法。该方法通过对LiDAR强度数据和高程数据提取分类特征,完成多光谱LiDAR的随机森林地物分类;并分析随机森林的特征贡献度特性,采用后向特征选择方法实现分类特征选择。通过对加拿大Optech Titan多光谱LiDAR数据的试验表明:随机森林方法可以获得较好的地物分类精度,而且可以适当地去除部分冗余和相关的特征,从而有效提高分类精度。  相似文献   

14.
15.
赵生银  安如  朱美如 《测绘学报》2019,48(11):1452-1463
特征空间的构建和优化对遥感图像识别能力的提高具有重要作用。针对面向对象方法对波段光谱信息利用不足,以及像元识别法无法充分利用图像空间几何等信息的问题,本文建立了新颖的联合像素级和对象级特征的航摄遥感图像城市变化检测方法。首先,充分利用像素级和对象级特征的优势,建立考虑光谱、指数、纹理、几何、表面高度及神经网络深度特征的特征空间;然后,引入LightGBM(light gradient boosting machine)算法对大量特征进行选择研究;最后,采用随机森林识别器对宜兴市2012年和2015年两期遥感图像进行识别,利用变化矩阵进行城市的变化检测。结果表明:联合像元、深度、对象特征和LightGBM特征选择算法的识别效果最好,平均的总体识别精度达到了88.50%,Kappa系数达到0.86,比基于像元、深度或对象特征的识别方法分别提高了10.50%、15.00%和4.00%;城市变化检测精度达到了87.50%。因此,本文方法是利用甚高分辨率航摄遥感图像进行城市变化的检测的有效方法。  相似文献   

16.
Light detection and ranging (lidar) technologies provide a practical solution to 3-D terrain mapping through laser ranging and scanning technologies. A lidar footprint, which is the critical parameter describing the size of laser sampling area, varies with the scanning geometry and the local topography encountered. Integrating the effects of the scanning geometry and terrain orientations, this letter analyzes the intersection geometry of a laser beam and the terrain and develops a set of rigorous generalized footprint equations on inclined terrain for both across-track and Palmer scanning systems.   相似文献   

17.
In this article, two methods for data collection in urban environments are presented. The first method combines multispectral imagery and laser altimeter data in an integrated classification for the extraction of buildings, trees and grass-covered areas. The second approach uses laser data and 2D ground plan information to obtain 3D reconstructions of buildings.  相似文献   

18.
Quantification of the urban composition is important in urban planning and management. Previous research has primarily focused on unmixing medium-spatial resolution multispectral imagery using spectral mixture analysis (SMA) in order to estimate the abundance of urban components. For this study an object-based multiple endmember spectral mixture analysis (MESMA) approach was applied to unmix the 30-m Earth Observing-1 (EO-1)/Hyperion hyperspectral imagery. The abundance of two physical urban components (vegetation and impervious surface) was estimated and mapped at multiple scales and two defined geographic zones. The estimation results were validated by a reference dataset generated from fine spatial resolution aerial photography. The object-based MESMA approach was compared with its corresponding pixel-based one, and EO-1/Hyperion hyperspectral data was compared with the simulated EO-1/Advanced Land Imager (ALI) multispectral data in the unmixing modeling. The pros and cons of the object-based MESMA were evaluated. The result illustrates that the object-based MESMA is promising for unmixing the medium-spatial resolution hyperspectral imagery to quantify the urban composition, and it is an attractive alternative to the traditional pixel-based mixture analysis for various applications.  相似文献   

19.
云的存在会对遥感影像的处理及目标识别等产生影响,因此,自动提取云对高分辨率卫星影像的应用具有重要意义。高分影像上更加复杂的云的细节形态及似云目标的干扰,使得高分影像的自动云提取难以达到实用水平。本文以雪地为例,选取形状、纹理和边缘3个差异化特征作为云与似云目标区分的关键,提出了一种区分高分辨率遥感影像中云和似云目标的云检测算法。首先利用Wallis滤波对输入影像进行预处理,增强影像中不同尺度的影像纹理模式;然后对影像进行快速稳定的均值漂移分割,利用灰度和纹理特征构成支持向量机的第一层分类器,将分割后的区域对象分成"云"和普通地物,再利用边缘、形状、纹理等特征结合灰度特征构成支持向量机的第二层分类器,将"云"区分为云区和似云目标;最后使用Grab-cut对云检测结果进行边缘迭代精化。本文算法取得了优良的试验结果,证明了算法在似云目标干扰下对高分辨率遥感影像进行精确云检测的能力。  相似文献   

20.
Systematic laboratory measurements of laser backscatter intensity are presented for brightness calibration targets, and a calibration scheme for airborne laser scanner intensity data is proposed. Thus far, the use of these data has been partly hampered by the variability of the intensity with time, and no test fields have been available for airborne reflectance calibration. Portable brightness targets (tarps), with nominal reflectances from 5% to 70%, were manufactured, and, based on these measurements, found suitable for lidar reflectance standards. Furthermore, the variability of the recorded intensity from the tarps as a function of incidence angle was low. The measurements also provide new information on the surface albedo dependence of backscattering effects: as the surface brightness increases from 5% to 70%, the hotspot brightness peak amplitudes increase by 20% to 30%, and their apparent widths reduce to a half, which implies that hotspots could be used as an albedo discriminator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号