首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The risk assessment is not only the one of the most effective soft measures in natural hazard prevention, but also is the base of hazard risk management. On account of the specificity of various elements at risk and debris flow mechanism, the theoretical system and technical procedure of debris flow quantitative risk assessment for buildings and roads were established in the mountaineous area of Southwest China, which included three sections: ①To represent debris flow hazard quantitatively using the intensity index IDF through FLO-2D simulation; ②To build debris flow physical vulnerability curve based on the loss exceedance-probability from Qipan gully debris flow case; ③To quantify the expected loss of the important elements at risk based on their database after setting the future debris flow scenarios. The case study of Yangling catchment indicated that the responding mechanism between elements at risk and debris flow physical mechanism was described quantitatively by this quantitative risk assessment system, which can contribute to the construction planning and prevention measure making in the southwestern mountainous area.  相似文献   

2.
泥石流作用下建筑物易损性评价方法分析与评价   总被引:1,自引:0,他引:1  
曾超  贺拿  宋国虎 《地球科学进展》2012,27(11):1211-1220
建筑物易损度评价作为泥石流易损度评价的重要组成部分,其研究是实现城镇及居民点泥石流风险定量化和风险管理的必要环节。综述近30年来,泥石流作用下建筑物易损度研究的发展过程,并指出以统计分析方法建立的建筑物易损度曲线普适性差且力学机理不明等问题,提出数值计算和模型实验的手段获取建筑物结构易损度的机理模型。由于建筑物易损度研究问题本身的复杂性,统计分析方法仍将作为建筑物易损度研究的重要手段,力学机理明晰的研究方法则将成为今后研究的难点和热点。此外,地震、滚石、雪崩等类似灾种的易损度研究方法和成果可被借鉴到泥石流领域。针对灾害中因结构破坏引发人员伤亡的情况,建议采用时间概率和基于条件概率的事件树方法计算建筑物内人员易损度。最终形成综合结构和人员易损度研究成果的建筑物易损度评价方法。  相似文献   

3.
Building vulnerability to debris flows in Taiwan: a preliminary study   总被引:3,自引:2,他引:1  
In quantitative risk analyses for natural hazards, vulnerability can be expressed as the ratio of reconstruction, replacement or reproduction expenses due to a damage caused by a certain process intensity and the original value of the element at risk exposed. To discuss the building vulnerability under debris flow events, the ratio is mostly related to debris flow inundation height, building materials and building values. Different types of buildings would resist to the impact of debris flows differently, resulting in different damage levels even under the same inundation height. After debris flow events, the damages to a building include the content loss and the structure loss, which is also variable due to the individual building conditions. This study proposes a flowchart to establish building vulnerability curves through estimating the damages to buildings after debris flow hazards. The losses of content and structure are firstly calculated separately to obtain the loss ratios with respect to original buildings. Secondly, by combining the content and structure loss ratio, the building vulnerability function is derived. In this paper, the original building content value was obtained from governmental statistic records and was based on the market price, and the structure value was received from a regional architecture office. The losses resulting from debris flow impacts were synthetically derived following field surveys. To combine the content and structure losses, a unit building with a floor area of 60?m2 was assumed. The result shows that due to a higher percentage of content value compared with the total building value, the loss ratio resulting from debris flows in Taiwan is higher compared with European studies, in particular with respect to high-frequency but low-magnitude events. The concept of obtaining building vulnerability is particularly suitable for regions where well-documented building loss records are unavailable.  相似文献   

4.
A procedure for landslide risk assessment is presented. The underlying hypothesis is that statistical relationships between past landslide occurrences and conditioning variables can be used to develop landslide susceptibility, hazard and risk models. The latter require also data on past damages. Landslides occurred during the last 50 years and subsequent damages were analysed. Landslide susceptibility models were obtained by means of Spatial Data Analysis techniques and independently validated. Scenarios defined on the basis of past landslide frequency and magnitude were used to transform susceptibility into quantitative hazard models. To assess vulnerability, a detailed inventory of exposed elements (infrastructures, buildings, land resources) was carried out. Vulnerability values (0–1) were obtained by comparing damages experienced in the past by each type of element with its actual value. Quantitative risk models, with a monetary meaning, were obtained for each element by integrating landslide hazard and vulnerability models. Landslide risk models showing the expected losses for the next 50 years were thus obtained for the different scenarios. Risk values obtained are not precise predictions of future losses but rather a means to identify areas where damages are likely to be greater and require priority for mitigation actions.  相似文献   

5.
6.
Thanks to modelling advances and the increase in computational resources in recent years, it is now feasible to perform 2-D urban flood simulations at very high spatial resolutions and to conduct flood risk assessments at the scale of single buildings. In this study, we explore the sensitivity of flood loss estimates obtained in such micro-scale analyses to the spatial representation of the buildings in the 2D flood inundation model and to the hazard attribution methods in the flood loss model. The results show that building representation has a limited effect on the exposure values (i.e. the number of elements at risk), but can have a significant impact on the hazard values attributed to the buildings. On the other hand, the two methods for hazard attribution tested in this work result in remarkably different flood loss estimates. The sensitivity of the predicted flood losses to the attribution method is comparable to the one associated with the vulnerability curve. The findings highlight the need for incorporating these sources of uncertainty into micro-scale flood risk prediction methodologies.  相似文献   

7.
Although geophysical hazards like earthquakes can lead to tremendous losses, they are often neglected or not considered in risk analyses within an Alpine context. However, lately and especially in the framework of multi-risk analyses, earthquake risk studies are being increasingly implemented within an Alpine relation too. The presented study was conducted to quantitatively estimate potential consequences of earthquake events in the Austrian Province of Tyrol. The methodological study framework integrates the general risk components (i) hazard, (ii) elements at risk, and (iii) vulnerability. They are considered on a regional scale, accepting pragmatic approaches with simplified procedures and assumptions. Scenarios for different potential epicentres were calculated based on two different macroseismic hazard maps derived from punctual ground motion values of the building code and microzonation studies. The maps take into account the design event definitions of existing building code and a, thereupon based, simple and mono-causal Maximum Credible Earthquake assumption. Corresponding elements at risk and damage potentials were identified and potential losses were estimated under consideration of different vulnerability approaches. It can be shown that most scenarios based on the design event definition of the Austrian and European building codes, respectively have the potential of building and inventory losses solely of some hundred million up to approximately €4 billion. Additional, building and inventory losses of maximum credible events can lead to losses of more than €7 billion merely in connection with the primary earthquake event neglecting all other cascading effects.  相似文献   

8.
Al Hoceima is one of the most seismic active regions in north of Morocco. It is demonstrated by the large seismic episodes reported in seismic catalogs and research studies. However, seismic risk is relatively high due to vulnerable buildings that are either old or don’t respect seismic standards. Our aim is to present a study about seismic risk and seismic scenarios for the city of Al Hoceima. The seismic vulnerability of the existing residential buildings was evaluated using the vulnerability index method (Risk-UE). It was chosen to be adapted and applied to the Moroccan constructions for its practicality and simple methodology. A visual inspection of 1102 buildings was carried out to assess the vulnerability factors. As for seismic hazard, it was evaluated in terms of macroseismic intensity for two scenarios (a deterministic and probabilistic scenario). The maps of seismic risk are represented by direct damage on buildings, damage to population and economic cost. According to the results, the main vulnerability index of the city is equal to 0.49 and the seismic risk is estimated as Slight (main damage grade equal to 0.9 for the deterministic scenario and 0.7 for the probabilistic scenario). However, Moderate to heavy damage is expected in areas located in the newer extensions, in both the east and west of the city. Important economic losses and damage to the population are expected in these areas as well. The maps elaborated can be a potential guide to the decision making in the field of seismic risk prevention and mitigation strategies in Al Hoceima.  相似文献   

9.
In the European Alps, the concept of risk has increasingly been applied in order to reduce the susceptibility of society to mountain hazards. Risk is defined as a function of the magnitude and frequency of a hazard process times consequences; the latter being quantified by the value of elements at risk exposed and their vulnerability. Vulnerability is defined by the degree of loss to a given element at risk resulting from the impact of a natural hazard. Recent empirical studies suggested a dependency of the degree of loss on the hazard impact, and respective vulnerability (or damage-loss) functions were developed. However, until now, only little information is available on the spatial characteristics of vulnerability on a local scale; considerable ranges in the loss ratio for medium process intensities only provide a hint that there might be mutual reasons for lower or higher loss rates. In this paper, we therefore focus on the spatial dimension of vulnerability by searching for spatial clusters in the damage ratio of elements at risk exposed. By using the software SaTScan, we applied an ordinal data model and a normal data model in order to detect spatial distribution patterns of five individual torrent events in Austria. For both models, we detected some significant clusters of high damage ratios, and consequently high vulnerability. Moreover, secondary clusters of high and low values were found. Based on our results, the assumption that lower process intensities result in lower damage ratios, and therefore in lower vulnerability, and vice versa, has to be partly rejected. The spatial distribution of vulnerability is not only dependent on the process intensities but also on the overall land use pattern and the individual constructive characteristics of the buildings exposed. Generally, we suggest the use of a normal data model for test sites exceeding a minimum of 30 elements at risk exposed. As such, the study enhanced our understanding of spatial vulnerability patterns on a local scale.  相似文献   

10.
泥石流风险及沟谷泥石流风险度评价   总被引:28,自引:4,他引:24  
风险一词虽然已经广泛被科学家和经济学家所使用 ,但涉及到自然灾害的风险研究则还是 2 0世纪 80年代中后期的事。国内有关泥石流风险的探讨 ,更是 2 0世纪 90年代才初见端倪。国际上 ,泥石流风险评价至今仍然是前沿探索性领域和新兴的研究课题。基于联合国对自然灾害风险的定义及其定量表达 ,本文给出了泥石流风险度 =危险度易损度这一数学命题的近似解。讨论了风险分级和不同风险等级的分布概率以及风险指南。以云南东川因民矿区黑山沟泥石流为例 ,对单沟泥石流风险度评价模型进行了示范应用  相似文献   

11.
12.
甘肃省天水市罗玉沟泥石流灾害风险评价   总被引:2,自引:0,他引:2  
甘肃省天水市罗玉沟曾经爆发过多次泥石流灾害,造成了巨大的经济损失和环境破坏。文章引用单沟泥石流风险评价模型中危害度的计算方法,对罗玉沟流域可能发生泥石流的概率进行了评价;潜在的经济损失主要从人员社会、物质和资源环境3大类进行评价。泥石流风险评价结果显示,该小流域在100a的尺度内发生泥石流的可能性为80%。潜在的经济损失为379583万元。  相似文献   

13.
In the context of natural hazard-related risk analyses, different concepts and comprehensions of the term risk exist. These differences are mostly subjected to the perceptions and historical backgrounds of the different scientific disciplines and results in a multitude of methodological concepts to analyse risk. The target-oriented selection and application of these concepts depend on the specific research object which is generally closely connected to the stakeholders’ interests. An obvious characteristic of the different conceptualizations is the immanent various comprehensions of vulnerability. As risk analyses from a natural scientific-technical background aim at estimating potential expositions and consequences of natural hazard events, the results can provide an appropriate decision basis for risk management strategies. Thereby, beside the preferably addressed gravitative and hydrological hazards, seismo-tectonical and especially meteorological hazard processes have been rarely considered within multi-risk analyses in an Alpine context. Hence, their comparative grading in an overall context of natural hazard risks is not quantitatively possible. The present paper focuses on both (1) the different concepts of the natural hazard risk and especially their specific expressions in the context of vulnerability and (2) the exemplary application of the natural scientific-technical risk concepts to analyse potential extreme storm losses in the Austrian Province of Tyrol. Following the corresponding general risk concept, the case study first defines the hazard potential, second estimates the exposures and damage potentials on the basis of an existing database of the stock of elements and values, and third analyses the so-called Extreme Scenario Losses (ESL) considering the structural vulnerability of the potentially affected elements at risk. Thereby, it can be shown that extreme storm events can induce losses solely to buildings and inventory in the range of EUR 100–150 million in Tyrol. However, in an overall context of potential extreme natural hazard events, the storm risk can be classified with a moderate risk potential in this province.  相似文献   

14.
Assessing landslide exposure in areas with limited landslide information   总被引:4,自引:2,他引:2  
Landslide risk assessment is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), run-out distance, landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. In this paper, a qualitative procedure for assessing the exposure of elements at risk is presented for an area of the Apulia region (Italy) where no temporal information on landslide occurrence is available. Given these limitations in data availability, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. The qualitative analysis was carried out using the spatial multi-criteria evaluation method in a global information system. A landslide susceptibility composite index map and four asset index maps (physical, social, economic and environmental) were generated separately through a hierarchical procedure of standardising and weighting. The four asset index maps were combined in order to obtain a qualitative weighted assets map, which, combined with the landslide susceptibility composite index map, has provided the final qualitative landslide exposure map. The resulting map represents the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to demonstrate how such an exposure map could be used in a basic risk assessment, a quantification of the economic losses at municipal level was carried out, and the temporal probability of landslides was estimated, on the basis of the expert knowledge. Although the proposed methodology for the exposure assessment did not consider the landslide run-out and vulnerability quantification, the results obtained allow to rank the municipalities in terms of increasing exposure and risk level and, consequently, to identify the priorities for designing appropriate landslide risk mitigation plans.  相似文献   

15.
To simulate debris flow run-out, the governing equations for free-surface shallow flow are corrected by setting the basal flow resistance coefficients with the quadratic rheological friction model. A well-balanced numerical scheme is developed for its run-out simulation over irregular topography. A linear reconstruction is adopted for improving the spatial accuracy of the numerical scheme. Considering the complex friction terms of governing equations of debris flow, they are estimated with a full implicit scheme for ensuring stability of the numerical scheme. The validity check of run-out simulation is implemented based on general knowledge of fluid, and a well-studied case occurred in the Xiezi Gully in Yingxiu Town, Sichuan Province of China. For practical purpose, the present numerical scheme is used for run-out prediction of debris flow in Xiaojia Gully of Panzhihua City, Sichuan Province of China. Our work aims to present a well-balanced numerical scheme for debris flow run-out simulation prediction, which can be applied quite conveniently to solve other kinds of debris flow models and helpful to promote the development in debris flow numerical calculation.  相似文献   

16.
This study establishes a novel method for assessing the community resilient capacity of debris flow disasters with appropriate parameters, such as responding, monitoring and communication capabilities. This study adopts eight communities in Taiwan, namely Nangang, Tongfu, Jhongyang, Laiyuan, Chingfu, Sinsheng, Shangan and Jyunkeng, as examples. First, the Analytic Hierarchy Process was applied to establish the framework of the community resiliency capacity, including the community’s resources for disaster resilience and resident capabilities. The community’s resources for disaster resilience are identified by surveying the community leaders via checklists. Resident capabilities are determined using questionnaires. The community resilient capacity refers to the sum of the results from these two investigations. The two investigations have similar weights, indicating that they are equally significant when evaluating community resilient capacity. Second, FLO-2D software is utilized for hazard analysis by simulation results of deposited areas for debris flows, and then these areas were categorized according to hazard degrees. Finally, the vulnerability of communities is classified based on the land use type. In summary, the values of capacity, hazard and vulnerability are integrated to determine the risk of debris flow for each community. A risk map is then generated.  相似文献   

17.
Urban Seismic Risk Evaluation: A Holistic Approach   总被引:3,自引:4,他引:3  
Risk has been defined, for management purposes, as the potential economic, social and environmental consequences of hazardous events that may occur in a specified period of time. However, in the past, the concept of risk has been defined in a fragmentary way in many cases, according to each scientific discipline involved in its appraisal. From the perspective of this article, risk requires a multidisciplinary evaluation that takes into account not only the expected physical damage, the number and type of casualties or economic losses, but also the conditions related to social fragility and lack of resilience conditions, which favour the second order effects (indirect effects) when a hazard event strikes an urban centre. The proposed general method of urban risk evaluation is multi hazard and holistic, that is, an integrated and comprehensive approach to guide decision-making. The evaluation of the potential physical damage (hard approach) as the result of the convolution of hazard and physical vulnerability of buildings and infrastructure is the first step of this method. Subsequently, a set of social context conditions that aggravate the physical effects are also considered (soft approach). In the method here proposed, the holistic risk evaluation is based on urban risk indicators. According to this procedure, a physical risk index is obtained, for each unit of analysis, from existing loss scenarios, whereas the total risk index is obtained by factoring the former index by an impact factor or aggravating coefficient, based on variables associated with the socio-economic conditions of each unit of analysis. Finally, the proposed method is applied in its single hazard form to the holistic seismic risk evaluation for the cities of Bogota (Colombia) and Barcelona (Spain).  相似文献   

18.
云南省新平县那板箐泥石流发育特征及风险评价   总被引:1,自引:0,他引:1  
2007年8月4日云南省新平县漠沙镇那板箐发生泥石流灾害,造成重大人员、经济损失。通过调查该泥石流的形成条件并分析其发育特征,明确了灾害危害的重点范围及原因,结合危险性与易损性评价形成了全流域风险性分区。结果表明:那板箐具备良好的泥石流地形、物源、水源发育条件,流域范围内人类活动剧烈,道路建设、电站引水、占用河道等是形成和加大泥石流灾害的原因,尤其是挤占河道的乡镇建筑沟段形成了危险与损失均在中等以上程度的高风险区。对泥石流发育特征进行分析与风险性评价,为该类泥石流的预防治理与乡镇后期建设规划提供指导。  相似文献   

19.
Vulnerability of buildings to debris flow impact   总被引:5,自引:1,他引:4  
Quantitative risk assessments (QRAs) for landslide hazards are increasingly being executed to determine an unmitigated level of risk and compare it with risk tolerance criteria set by the local or federal jurisdiction. This approach allows urban planning with a scientific underpinning and provides the tools for emergency preparedness. Debris-flow QRAs require estimates of the hazard probability, spatial and temporal probability of impact (hazard assessment) and vulnerability of the elements at risk. The vulnerability term is perhaps the most difficult to estimate confidently because (a) human death in debris flows is most commonly associated with building damage or collapse and is thus an indirect consequence and (b) the type and scale of building damage is very difficult to predict. To determine building damage, an intensity index (I DF) was created as the product of maximum expected flow depth d and the square of the maximum flow velocity v (I DF = dv 2). The I DF surrogates impact force and thus correlates with building damage. Four classes of building damage were considered ranging from nuisance flood/sedimentation damage to complete destruction. Sixty-six well-documented case studies in which damage, flow depth and flow velocity were recorded or could be estimated were selected through a search of the global literature, and I DF was plotted on a log scale against the associated damage. As expected, the individual damage classes overlap but are distinctly different in their respective distributions and group centroids. To apply this vulnerability model, flow velocity and flow depth need to be estimated for a given building location and I DF calculated. Using the existing database, a damage probability (P DF) can then be computed. P DF can be applied directly to estimate the likely insurance loss or associated loss of life. The model presented here should be updated with more case studies and is therefore made openly available to international researchers who can access it at .  相似文献   

20.
Yongbo Tie 《Natural Hazards》2013,65(3):1589-1601
Our aim is to determine the run-out distance of the debris flow that is crucial in the assessment, prevention and control of the debris flow hazard. Based on the variation characteristic of debris flow velocity in the alluvial fan, this paper proposes the calculation method of the velocity attenuation coefficient of the debris flow. By defining the velocity attenuation coefficient and deducing its calculating formula, this paper puts forward a new method to determine the run-out distance of the debris flow based on the velocity attenuation coefficient, and Gangou debris flow in Luding County, Sichuan Province is selected as a case for calculation and verification. Having 10 m as its measuring spacing, this paper measured 19 sections at the alluvial fan of the Gangou debris flow (among them, 11 sets of data are valid). And based on the measurement, this paper analyzes the characteristic of the velocity attenuation and calculates its velocity attenuation coefficient after the 2005 debris flow. The study indicates that when the velocity of Gangou debris flow at the alluvial fan is greater than 12 % of the initial velocity (at the mouth of gully), the attenuation is quite remarkable. But when the velocity at the alluvial fan is less than 12 % of the initial velocity, the attenuation is quite slow. Besides, when Gangou debris flow rushes out of the gully mouth (the initial velocity is 10 m/s) and when it attenuates to the 32 time, its velocity is less than 0.1 m/s, the debris flow is considered to stop flowing, and the run-out distance of Gangou debris flow is calculated to be 320 m. But the present alluvial fan of Gangou debris flow is measured to be 285 m in length, and the calculated run-out distance is 320 m, which is 35 m longer than its present length. This means when the debris flow runs out in 2005, it blocked up the main river (Dadu River) in some extent. And this finding is generally in accordance with that from the field survey. The findings can be of theoretical and practical significance in the debris flow hazard assessment, as well as its prevention and mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号