首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Respiration and ammonia excretion data and chemical composition data [water content, ash, carbon (C), nitrogen (N) and C:N ratios] of 18–32 amphipods (hyperiids and gammarids) from the epipelagic through bathypelagic zones of the world’s oceans were compiled. The independent variables including body mass, habitat temperature and mid-sampling depth were all significant predictors of respiration, accounting for 65–83 % of the variance in the data, while the former two variables were significant predictors of ammonia excretion, accounting for 64–77 % of the variance. Atomic O:N ratios (respiration:ammonia excretion) ranged from 11 to 74 (median 21.5). C composition was negatively correlated with habitat temperature, but water contents, ash, N, and the C:N ratio were uncorrelated with the three independent variables. As judged by C:N ratios, protein was considered to be the major organic component of most pelagic amphipods. However, some amphipods from >500 m depth exhibited high C:N ratios (>10) suggesting a large deposition of lipids in the body. Comparison of the present results with global bathymetric models of euphausiids and pelagic copepods revealed that respiration rates of the pelagic amphipods were near-equal to the rates of euphausiids but greater than the rates of pelagic copepods, reflecting taxon-specific body morphology and swimming behavior among the three taxa. As a marked feature of body chemical composition, the pelagic amphipods exhibited extremely high ash content (mean 25 % of DM) due to their possession of a robust exoskeleton.  相似文献   

2.
Respiration, ammonia excretion and chemical composition data [water content, ash, carbon (C), nitrogen (N) and C:N ratios] of 16–43 pelagic decapods from epipelagic through abyssopelagic zones of the world’s oceans were compiled. For respiration, the independent variables including body dry mass, habitat temperature and sampling depth were all significant predictors of the empirical regression model, whereas the former two variables were significant predictors of the theoretical regression model. For ammonia excretion, body dry mass and habitat temperature were significant predictors of both regression models. Overall, these variables accounted for 68–87 % of the variance in the data. Atomic O:N ratios (respiration:ammonia excretion) ranged from 9.1 to 91 (median 16.4), and no appreciable effects of the three variables were detected. Body composition components were not significantly affected by the three variables, except positive effects of habitat temperature on ash and negative effects of sampling depth on N composition. As judged by C:N ratios, protein was considered to be the major organic component of most pelagic decapods. Some pelagic decapods from >500 m depth exhibited high C:N ratios (8.6–10.2), suggesting a deposition of lipids in the body. Comparison of the present results with global bathymetric models of euphausiids and mysids revealed great similarities among these pelagic crustacean taxa characterized by common behavioral and morphological features such as active swimming, developed compound eyes and respiratory gill organ.  相似文献   

3.
Respiration (=oxygen consumption) rates of 28 zooplankton species belonging to 10 taxa from 500 to 5,000?m depth of the western subarctic Pacific Ocean were determined as 0.027–0.44?μLO2 mg dry mass?1 h?1 at in situ temperatures (1.5–3?°C), which are 80?% lower than the rates of the epipelagic Antarctic zooplankton with similar body mass and at a comparable temperature. In terms of adjusted metabolic rate to 1?mg body N (AMR; μLO2?mg?N?0.8?h?1) at 1?°C, the present results (mean 1.66) fall well within the range (0.84–3.32) reported for copepods, chaetognaths, and mixed crustaceans from 500 to 7,000?m in the subarctic Pacific Ocean and Antarctic waters. Judging from their body C:N elemental ratios and ash-free dry mass (=organic matter) data, the major component of organic matter is deduced to be protein (C:N?=?3.4–8.1, by mass) for 19 out of 28 species and lipids (C:N?=?8.6–13.0) for the remaining 9 species.  相似文献   

4.
This paper reviews the author's research on metabolic activities of marine zooplankton for which the Okada Prize of the Oceanographical Society of Japan was awarded in 1978. The term metabolic activities used here refers to various physiological rate processes of zooplankton, such as respiration, excretion, feeding and growth.On the basis of experimental data obtained by the author and other workers, it is emphasized that all these rates are power functions of the body weight of zooplankton. In other words, the weight specific rates (rates per unit body weight) increase with a decrease in body weight. The habitat temperature of zooplankton can also affect the level of these rates.The relationship between these rates and body weight established experimentally can be applied to the estimation of the total rates of a zooplankton community in the field, by knowing the size distribution of individual zooplankters. The feasibility of this method was tested with the zooplankton community in the Kuroshio region.Finally, the potential importance of microzooplankton in total zooplankton respiration was suggested, based on respiration rate data recently obtained in the author's laboratory.  相似文献   

5.
对海湾扇贝和太平洋牡蛎的呼吸和排泄进行了实验研究。结果表明,温度和贝的体重对两种贝类的耗氧率和氨排泄率都有明显的影响,且两因子间存在着交互作用。海湾扇贝的耗氧率(QO,mg/g·h)和氨排泄率(QN,μg/g·h)与温度(T,℃)和湿重(W,g)存在下列关系:QO=0.046W-0.2721.08T,QN=6.79W-0.3271.03T;太平洋牡蛎的耗氧和氨排泄率与温度、湿重存在下列关系:QO=0.085W-0.1301.06T,QN=2.66W-0.2361.01T。  相似文献   

6.
We measured the ammonium excretion, phosphate excretion and respiration rates of the scyphomedusa Aurelia aurita from Ondo Strait, in the central part of the Inland Sea of Japan, at 28 and 20°C. The rates measured at 28°C were converted to those at 20°C using the Q10 values, i.e. 1.56, 1.57 and 2.80, for ammonium excretion, phosphate excretion and respiration rates, respectively. The composite relationships between metabolic rates and wet weight of a medusa (WW, g, range 11–1330 g) at 20°C were expressed by the following allometric equations. For ammonium excretion rate (N, μmoles N medusa−1d−1): N = 0.497WW 1.09, phosphate excretion rate (P, μmoles P medusa−1d−1): P = 0.453WW 0.84, and respiration rate (R, μmoles O2 medusa−1d−1): R = 96.9WW 1.06. Mean O:N ratios (i.e. atomic ratios of 16.9 and 11.0 at 28 and 20°C, respectively) indicated that the metabolism of A. aurita medusae was protein-dominated. These metabolic parameters enabled us to estimate the nitrogen and phosphorus regeneration rates of an A. aurita medusa population typical of early summer in the Ondo Strait (means of water temperature, medusa individual weight and population biomass: 20°C, 200 g WW and 50.8 g WW m−3, respectively). Regenerated nitrogen and phosphorus were equivalent to 10.0 and 21.6% of phytoplankton uptake rates, respectively, nearly twice that estimated for mesozooplankton, demonstrating that A. aurita medusae are key components of the plankton community, influencing the trophic and nutrient dynamics in the Ondo Strait during early summer.  相似文献   

7.
不同规格近江牡蛎的排氨率和耗氧率分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用实验生态学方法研究了不同规格近江牡蛎的呼吸和排泄生理生态学参数。结果显示,近江牡蛎耗氧率RO随软体干重(W )的增加而减小, 体重对近江牡蛎耗氧率(RO)的影响达极显著水平,RO = 1.8232W-0.7600, (R2= 0.8313 , P <0.01); 近江牡蛎的排氨率(RN)和排磷率(RP)随软体干重的增加而降低,呈负相关关系;而氧氮比O/N和氮磷比N/P在各组间未达显著水平(P >0.05) , RN = 0.0930W-0.6582 (R2 = 0.7444, P <0.01)、RP = 0.0126W-0.8874 (R2 = 0.9224,P <0.01);各组不同规格近(大小)江牡蛎的O/N值较高,而N/P值则随规格增大而呈上升趋势,但差异也不显著(P >0.05)。这些研究结果对牡蛎养殖密度和环境关系分析及牡蛎健康养殖具有重要参考价值。  相似文献   

8.
Feeding periodicity, consumption rate, absorption efficiency, respiration rate and ammonia excretion were measured as functions of wet body mass in abalone collected from the western and southern Cape coasts. A well developed diel feeding rhythm was evident, consumption being restricted to the period 16h00–08h00. Food intake averaged 8,1 per cent of wet flesh mass·d?1 at 14°C and 11,4 percent at 19°C. The daily consumption rate was related to body mass by the relationships C(g) = 0,54 W(g)0,67 at 14°C and C(g) = 0,35 W(g)0,77 at 19°C. Absorption efficiency averaged 37 per cent and was independent of body size. Equations relating respiration rate to wet body mass were R(m? O2·h?1) = 0,03 W(g)0,83 at 14°C and R = 0,03 W(g)0,94 at 19°C. No significant differences were detected between day and night rates or between fed and starved individuals. The rate of ammonia excretion (μmole·h?1) was related to wet body mass (g) by the equations U = 0,22 W0,43 at 14°C and U = 0,03 W0,85 at 19°C.  相似文献   

9.
Growth and energy budget of marine amphipod juvenile Eogammarus possjeticus at different temperatures(20°C,24°C, 26°C, 28°C, 30°C, 32°C and 34°C) were investigated in this study. The results showed that the cumulative mortality rate increased significantly with rising temperature(p0.01), and exceeded 50% after 24 h when temperature was above 30°C. With the temperature increasing from 20°C to 26°C, the ingestion rate and absorption rate increased, but decreased significantly above 28°C(p0.01), indicating a decline in feeding ability at high temperatures. The specific growth rate increased with rising temperature, but decreased significantly(p0.01) after reaching the maximum value at 24°C. Similarly, the oxygen consumption and ammonia emission rates also showed a trend of first increase and then decrease. However, the O:N ratio decreased first and then increased with rising temperature, indicating that the energy demand of E. possjeticus juvenile transferred from metabolism of carbohydrate and lipid to protein. In the energy distribution of amphipods, the proportion of each energy is different. With rising temperature, the ratio of the energy deposited for growth accounted for ingested gross energy showing a trend of decrease, while the energy lost to respiration, ammonia excretion, and feces accounted for ingested gross energy being showed a trend of increase. It seemed that rising temperature increased the metabolism and energy consumption of the amphipods and, meanwhile, decreased the energy used for growth, which may be an important reason for the slow growth and small body size of the amphipods during the summer high-temperature period.  相似文献   

10.
The biomass, elemental composition, and rates of ingestion and excretion by macrozoo‐plankon associated with the upwelling plume off the north‐west coast of the South Island, New Zealand, were investigated in March‐April 1983. Ingestion and excretion rates of the major zoo‐plankton species were combined with abundance data to determine the spatial and temporal variability which may influence phytoplankton dynamics in the plume system. Zooplankton biomass near Cape Kahurangi was dominated by small copepods like Acartia ensifera (up to 60%). In the South Tar‐anaki Bight, larval and adult forms of the euphau‐siid Nyctiphanes australis commonly contributed up to 60% of biomass. However, the carbon ingestion and ammonia excretion patterns of N. australis were spatially displaced from those of the total zooplankton community in the South Taranaki Bight because of higher weight‐specific metabolic rates for the smaller copepods. Close to the focus of the upwelling near the Kahurangi Shoals, grazing pressure on the phytoplankton was high, but as the upwelled water was advected into the Taranaki Bight, carbon production exceeded utilisation by zooplankton. Relatively high rates of ammonia excretion were also associated with peak zooplankton biomass near the Kahurangi Shoals and in the eastern Taranaki Bight.  相似文献   

11.
采用静水呼吸室法,研究了温度、盐度和两种麻醉剂(丁香油、MS-222)对体质量为(6.44±0.59)g的大泷六线鱼幼鱼耗氧率和排氨率的影响。实验分别设置了5个温度梯度(8℃、12℃、16℃、20℃、24℃),5个盐度梯度(15‰、20‰、25‰、30‰、35‰),6个丁香油浓度梯度(0、8、16、24、32、40 mg/L)和5个MS-222浓度梯度(0、10、20、30、40 mg/L)。结果显示,温度、盐度和两种麻醉剂均对耗氧率和排氨率有显著性影响。8℃时,耗氧率和排氨率最低,随温度升高先升高后降低,且均在20℃时达到峰值;盐度30‰时,耗氧率和排氨率最低,盐度升高或降低都会导致耗氧率和排氨率升高;丁香油和MS-222均能有效降低大泷六线鱼的耗氧率和排氨率,其中丁香油的降低效果更为明显;丁香油浓度为24 mg/L时或MS-222为20 mg/L时可使大泷六线鱼处于深度镇定期,结合耗氧率及排氨率变化,认为上述浓度是大泷六线鱼幼鱼保活运输的最佳浓度;本研究所有处理组的O∶N比值范围均在14.77~24.11之间,表明适宜温度和盐度条件下,大泷六线鱼幼鱼主要由蛋白质和脂肪提供能量。研究认为,适度降温、自然盐度和适宜浓度的麻醉剂处理均可显著降低大泷六线鱼幼鱼的呼吸代谢强度,其中丁香油相比MS-222作用效果更加明显。本研究结果为实现大泷六线鱼高质量运输提供了科学参考。  相似文献   

12.
盐度对二倍体和三倍体长牡蛎呼吸和排泄的影响   总被引:6,自引:1,他引:6  
采用室内实验的方法研究了盐度对二倍体(2n)和三倍体(3n)长牡蛎(Crassostrea gi-gas)呼吸和排泄的影响。实验的盐度(S)梯度为15,20,25,30,35共5个梯度,实验牡蛎的规格为,2n:W(软体部干质量,单位为g)=0.347±0.071 g;3n:W=0.301±0.099g。实验结果表明:盐度对二倍体和三倍体长牡蛎的呼吸和排泄有显著影响。在实验的盐度范围内,随着盐度的升高,二倍体和三倍体长牡蛎的耗氧率逐渐增大,盐度与耗氧率的关系可表示为,2n:Ro[mg/(g·h)]=0.0142S~(1.219),3n:Ro[mg/(g·h)]=0.0085S~(1.391);随盐度的升高,排氨率逐渐增大,当S为35时,二倍体和三倍体长牡蛎的排氨率略有下降,在实验的盐度范围内,盐度与排氨率的关系可表示为,2n:RA[μg/(g·h)]=-12.25+2.902S-0.0573S~2;3n:RA[ug/(g·h )]=-39.39+3.882S-0.06S~2。在实验的盐度范围内,二倍体和三倍体长牡蛎耗氧率的差异未达到显著水平(P>0.05),而排氨率的差异则有所不同,当S为15~20时,二倍体和三倍体牡蛎的排氨率差异达到显著水平(P<0.05),而S为25~35时,其差异不显著(P>0.05)。  相似文献   

13.
Pteropods in Southern Ocean ecosystems   总被引:1,自引:0,他引:1  
To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group.Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m−3 (max = 800 ind m−3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m−3 (max = 2681 ind m−3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m−3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation.Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind−1 d−1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind−1 d−1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes.Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies.Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.  相似文献   

14.
1997年6~8月于山东省海阳市黄海集团公司养虾场,用5个实验围隔研究了对虾池不同粒级浮游生物的呼吸率和初级生产率.结果表明:(1)小型、微型及超微型浮游生物的呼吸率平均分别为0.07,0.38及0.31mg/(dm3·d),占各粒级浮游生物总呼吸率的9%,50%及41%.小型、微型及超微型浮游植物的生产率平均分别为0.04,1.26及0.15mg/(dm3·d),占相应粒级浮游植物总生产率的3%,87%及10%.各粒级浮游生物呼吸率占相应粒级浮游植物生产率的比例为:小型浮游生物175%;微型浮游生物30%;超微型浮游生物207%.(2)小型浮游动物、超微型浮游动物(含细菌)的呼吸率显著高于相应粒级浮游植物呼吸率,微型浮游植物的呼吸率明显高于微型浮游动物呼吸率.不同粒级浮游植物呼吸率的大小顺序为微型、超微型、小型,不同粒级浮游动物呼吸率顺序为超微型(含细菌)、微型、小型.  相似文献   

15.
2007年3月,将采集于湛江雷州的波纹巴非蛤Paphia undulate,根据其个体大小分为A组和B组,外壳长度分别为(4.51±0.17)cm和(3.69±0.11) cm,并采用Winkler碘量法和次溴酸盐氧化法分别测定了其单位质量的耗氧率、排氨率及其氧氮比(O∶N),研究了盐度和规格对波纹巴非蛤代谢的影响.实...  相似文献   

16.
为了分析雅浦海沟中底栖生物群落的食物来源和营养级,本研究分析了雅浦海沟真光层中浮游植物和浮游动物、海底沉积物和巨型底栖生物(海绵、海参、海蛇尾、海星、海葵和钩虾)中的碳、氮稳定同位素组成。研究发现雅浦海沟真光层中的浮游植物和浮游动物δ13C值[(-22.8±0.4)‰和(-21.8±0.8)‰]和δ15N值[(5.4±0.4)‰和(6.8±0.2)‰]与巨型底栖生物的δ13C值(-20.1‰~-16.8‰)和δ15N值(11.9‰~17.9‰)的差异超过了一个营养级,表明作为底栖生物的初始食物来源的浮游植物和浮游动物在向下输送的过程中经历了食物链传递和细菌的降解。巨型底栖生物的δ15N和δ13C值之间无显著的相关性,此外不同物种之间营养级也存在明显差异,表现为海绵的营养级相对较高(3.4~4.7),海参(3.3~3.6)、海蛇尾(3.4~3.5)和海星(3.2~3.7)的营养级较为接近,钩虾(2.9~3.3)和海葵(3.1)的营养级则相对略低,反映了底栖生物不同物种之间食物来源的多样化。  相似文献   

17.
Abstract. The removal of glycine and glucose by freshly collected adult Mytilus edulis was determined using radiolabeled substances added to ambient concentrations of dissolved organic materials in freshly collected natural sea water. Uptake rates were calculated for substrate concentrations of 0.5 μM glycine and 1.0 μM glucose and were compared with the animals' energy and nitrogen demands as measured by oxygen consumption and ammonia excretion rates. Respiration and ammonia excretion rates as well as cither glycine or glucose removal were all determined for the same animals. The mean respiration rate was 670μl O2 g-1h-1, the mean ammonia excretion rate 1.95 μg-at NH4-g-1 h-1. The calculated uptake rates were 0.48 μmol -g-1-h-1 for free amino acids and 0.44 μmol-g-1 h-1 for free simple sugars. Such uptake rates could have contributed roughly 13% of the mussels' energy requirements or 10% of the mussels' nitrogen requirements assuming the following conditions: 0.5 μM concentration of free amino acids, 1.0μM concentration of simple sugars, uptake of total amino acids at a rate based on a weighted removal rate of glycine, alanine, serine, and glutamic acid, and uptake of simple sugars at a rate equal to that of glucose removal. It is apparent that simple organic substances dissolved in sea water may be of some benefit to mussels, especially when the substances occur in concentrations typical of coastal sea water.  相似文献   

18.
To further evaluate the potential use of Mg/Ca and Sr/Ca ratios as a paleothermometer in the shell carbonate of the blue mussel Mytilus edulis, we grew juvenile mussels (~15 mm shell height; <2 years old) collected from Maine, USA, in controlled environments for 4 months. The four-by-three factorial design consisted of four circulating temperature baths (7, 11, 15 and 19°C), and three salinity ranges (23, 28, and 32). During the experiment, water Mg/Ca and Sr/Ca molar ratios were monitored weekly, and showed little variation across all salinity and temperature ranges. Data from sampled shells including all salinity treatments yielded relatively poor relationships between shell elemental chemistry and water temperatures. However, if only the low salinity treatment data (23) are used, the relationships between shell elemental chemistry and water temperature improve moderately. Based on the data presented here, it may be possible to use Mg/Ca and Sr/Ca ratios from the shell carbonate of juvenile M. edulis to reconstruct paleotemperatures in estuarine settings (salinity below 24) with a corresponding RMSE (root mean squared error; 95% confidence interval) of ±2.4°C and ±2.8°C, respectively. In order for this methodology to be statistically meaningful, water temperature changes must be rather large, as the errors associated with using Mg/Ca and Sr/Ca ratios from the shell material of M. edulis are substantial. Further work is required to determine if the findings presented here can be duplicated, and if the potential salinity effect is pervasive.  相似文献   

19.
2012年冬季菲律宾海浮游动物丰度和生物量的水平分布   总被引:1,自引:1,他引:0  
为了解西太平洋菲律宾海浮游动物丰度和生物量的水平分布特征,于2012年11月26日至2012年12月12日对菲律宾海上层海洋(0—200m)的浮游动物进行了调查。调查站位分别位于受赤道逆流(NECC)、棉兰老流(MC)、北赤道流(NEC)和黑潮(KC)影响的海域。通过比较浮游动物的丰度和生物量(分别用干重,灰分,无灰干重和含能量等指标表示),探讨不同海流中浮游动物的分布特征。结果表明:桡足类、毛颚类和水母类是菲律宾海浮游动物的三大主要类群。调查海域浮游动物丰度为11—116ind./m3,NECC区平均丰度最高((96±28)ind./m3),然后依次是MC区和KC区,NEC区最小((26±9)ind./m3)。在浮游动物生物量(干重)方面,同样NECC区最高((3.25±1.11)mg/m3),其次为MC区,但是平均丰度最小的NEC区生物量超过KC区。造成这一差异的主要原因,可能是由于KC区的浮游动物具有更高的含水量以及较小个体所占比例较高。不同水团之间浮游动物灰分、无灰干重和含能量的分布特征与干重相一致。结合环境因子分析显示,上升流、叶绿素a、初级生产力、海流和温度等因素对浮游动物的分布具有一定影响。  相似文献   

20.
饵料浓度对菲律宾蛤仔呼吸和排泄的影响   总被引:9,自引:1,他引:9  
在26℃水温条件下 ,对体重和饵料浓度对菲律宾蛤仔Ruditapesphilippinarum呼吸和排泄的影响进行了研究。结果表明 ,耗氧量和排氨量随体重的增加而增加 ,而呼吸率和排泄率均随体重的增加而减小。在饵料浓度小于或等于6.43±1.35mg/L,TPM范围内 ,蛤仔呼吸率随着饵料浓度的增大而增大 ,超过这一浓度范围 ,其呼吸率随着饵料浓度的增大而减小。在饵料浓度小于或等于9.25±2.11mg/L,TPM范围内 ,蛤仔排泄率也是随着饵料浓度的增大而增大 ,而超过这一浓度范围 ,其排泄率随着饵料浓度的增大而减小。蛤仔的氧氮比随着饵料浓度的升高而降低 ,说明饵料浓度较高时 ,蛤仔体内蛋白质代谢率增高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号