首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The use of a seismic intensity measure (IM) is paramount in decoupling seismic hazard and structural response estimation when assessing the performance of structures. For this to be valid, the IM needs to be sufficient;that is, the engineering demand parameter (EDP) response should be independent of other ground motion characteristics when conditioned on the IM. Whenever non‐trivial dependence is found, such as in the case of the IM being the first‐mode spectral acceleration, ground motion selection must be employed to generate sets of ground motion records that are consistent vis‐à‐vis the hazard conditioned on the IM. Conditional spectrum record selection is such a method for choosing records that are consistent with the site‐dependent spectral shape conditioned on the first‐mode spectral acceleration. Based on a single structural period, however the result may be suboptimal, or insufficient, for EDPs influenced by different period values, for example, peak interstory drifts or peak floor accelerations at different floors, potentially requiring different record suites for each. Recently, the log‐average spectral acceleration over a period range, AvgSA, has emerged as an improved scalar IM for building response estimation whose hazard can be evaluated using existing ground motion prediction equations. Herein, we present a recasting of conditional spectrum record selection that is based on AvgSA over a period range as the conditioning IM. This procedure ensures increased efficiency and sufficiency in simultaneously estimating multiple EDPs by means of a single IM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
A fundamental issue in the framework of seismic probabilistic risk analysis is the choice of ground motion intensity measures (IMs). Based on the floor response spectrum method, the present contribution focuses on the ability of IMs to predict non‐structural components (NSCs) horizontal acceleration demand. A large panel of IMs is examined and a new IM, namely equipment relative average spectral acceleration (E‐ASAR), is proposed for the purpose of NSCs acceleration demand prediction. The IMs efficiency and sufficiency comparisons are based on (i) the use of a large dataset of recorded earthquake ground motions; (ii) numerical analyses performed on three‐dimensional numerical models, representing actual structural wall and frame buildings; and (iii) systematic statistical analysis of the results. From the comparative study, the herein introduced E‐ASAR shows high efficiency with respect to the estimation of maximum floor response spectra ordinates. Such efficiency is particularly remarkable in the case of structural wall buildings. Besides, the sufficiency and the simple formulation allowing the use of existing ground motion prediction models make the E‐ASAR a promising IMs for seismic probabilistic risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The calculated nonlinear structural responses of a building can vary greatly, even if recorded ground motions are scaled to the same spectral acceleration at a building's fundamental period. To reduce the variation in structural response at a particular ground‐motion intensity, this paper proposes an intensity measure (IMcomb) that accounts for the combined effects of spectral acceleration, ground‐motion duration, and response spectrum shape. The intensity measure includes a new measure of spectral shape that integrates the spectrum over a period range that depends on the structure's ductility. The new IM is efficient, sufficient, scalable, transparent, and versatile. These features make it suitable for evaluating the intensities of measured and simulated ground motions. The efficiency and sufficiency of the new IM is demonstrated for the following: (i) elastic‐perfectly plastic single‐degree‐of‐freedom (SDOF) oscillators with a variety of ductility demands and periods; (ii) ductile and brittle deteriorating SDOF systems with a variety of periods; and (iii) collapse analysis for 30 previously designed frames. The efficiency is attributable to the inclusion of duration and to the ductility dependence of the spectral shape measure. For each of these systems, the transparency of the intensity measure made it possible to identify the sensitivity of structural response to the various characteristics of the ground motion. Spectral shape affected all structures, but in particular, ductile structures. Duration only affected structures with cyclic deterioration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Several proposals are explored for the hazard and intensity measure (IM) consistent selection of bidirectional ground motions to assess the performance of 3D structural models. Recent studies have shown the necessity of selecting records that thoroughly represent the seismicity at the site of interest, as well as the usefulness of efficient IMs capable of estimating the response of buildings with low scatter. However, the advances realized are mostly geared towards the structural analysis of 2D models. Few are the combined record, and IM selection approaches suggested expressly for nonlinear dynamic analysis of 3D structural models, especially when plan asymmetry and torsion sensitivity come into play. Conditional spectrum selection is leveraged and expanded here to offer a suite of approaches based on both scalar and vector IMs that convey information from two orthogonal horizontal components of the ground motion. Applications on multiple 3D building models highlight the importance of (a) employing the same IM for both record selection and response assessment and (b) maintaining hazard consistency in both horizontal components, when using either a scalar or a vector IM. All tested approaches that respect these conditions can be viable, yet the one based on the geometric mean of multiple spectral ordinates from both components over a period range seems to hold the most promise for general use.  相似文献   

5.
在基于性能的地震工程学(PBEE)中,建立概率地震需求模型(PSDM)时需要对桥梁结构的工程需求参数(EDP)进行概率估计。其中,强地面运动参数(IM)的选择对EDP的概率估计影响很大,因此需要正确选择IM。分别采用目前最广泛使用的结构第一模态周期弹性谱加速度(5%阻尼比)Sa(T1,5%)和峰值地面加速度PGA作为IM,选择实际地震波并进行合理的调值,对一座钢筋混凝土桥墩进行IDA分析,其计算结果表明:对于不同性质EDP的概率估计值,以PGA作为IM计算所得的结果明显偏于非保守,且离散度一般也更大。说明可以针对不同性质的EDP,根据地面运动强度的大小,选择不同的IM,通过合理的调值对EDP进行概率估计,可以更加精确、高效地建立PSDM。  相似文献   

6.
A methodology based on incremental dynamic analysis (IDA) is presented for the evaluation of structures with vertical irregularities. Four types of storey‐irregularities are considered: stiffness, strength, combined stiffness and strength, and mass irregularities. Using the well‐known nine‐storey LA9 steel frame as a base, the objective is to quantify the effect of irregularities, both for individual and for combinations of stories, on its response. In this context a rational methodology for comparing the seismic performance of different structural configurations is proposed by means of IDA. This entails performing non‐linear time history analyses for a suite of ground motion records scaled to several intensity levels and suitably interpolating the results to calculate capacities for a number of limit‐states, from elasticity to final global instability. By expressing all limit‐state capacities with a common intensity measure, the reference and each modified structure can be naturally compared without needing to have the same period or yield base shear. Using the bootstrap method to construct appropriate confidence intervals, it becomes possible to isolate the effect of irregularities from the record‐to‐record variability. Thus, the proposed methodology enables a full‐range performance evaluation using a highly accurate analysis method that pinpoints the effect of any source of irregularity for each limit‐state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This short communication introduces a quantitative approach for the engineering validation of ground‐motion simulations based on information theory concepts and statistical hypothesis testing. Specifically, we use the Kullback‐Leibler divergence to measure the similarity of the probability distributions of recorded and simulated ground‐motion intensity measures (IMs). We demonstrate the application of the proposed validation approach to ground‐motion simulations computed by using a variety of methods, including Graves and Pitarka hybrid broadband, the deterministic composite source model, and a stochastic white noise finite‐fault model. Ground‐motion IMs, acting as proxies for the (nonlinear) seismic response of more complex engineered systems, are considered herein to validate the considered ground‐motion simulation methods. The list of considered IMs includes both spectral‐shape and duration‐related proxies, shown to be the optimal IMs in several probabilistic seismic demand models of different structural types, within the framework of performance‐based earthquake engineering. The proposed validation exercise (1) can highlight the similarities and differences between simulated and recorded ground motions for a given simulation method and/or (2) allow the ranking of the performance of alternative simulation methods. The similarities between records and simulations should provide confidence in using the simulation method for engineering applications, while the discrepancies should help in improving the tested method for the generation of synthetic records.  相似文献   

8.
Incremental dynamic analysis (IDA)—a procedure developed for accurate estimation of seismic demand and capacity of structures—requires non‐linear response history analysis of the structure for an ensemble of ground motions, each scaled to many intensity levels, selected to cover the entire range of structural response—all the way from elastic behaviour to global dynamic instability. Recognizing that IDA of practical structures is computationally extremely demanding, an approximate procedure based on the modal pushover analysis procedure is developed. Presented are the IDA curves and limit state capacities for the SAC‐Los Angeles 3‐, 9‐, and 20‐storey buildings computed by the exact and approximate procedures for an ensemble of 20 ground motions. These results demonstrate that the MPA‐based approximate procedure reduces the computational effort by a factor of 30 (for the 9‐storey building), at the same time providing results to a useful degree of accuracy over the entire range of responses—all the way from elastic behaviour to global dynamic instability—provided a proper hysteretic model is selected for modal SDF systems. The accuracy of the approximate procedure does not deteriorate for 9‐ and 20‐storey buildings, although their dynamics is more complex, involving several ‘modes’ of vibration. For all three buildings, the accuracy of the MPA‐based approximate procedure is also satisfactory for estimating the structural capacities for the limit states of immediate occupancy, collapse prevention, and global dynamic instability. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Earthquake‐induced slope displacement is an important parameter for safety evaluation and earthquake design of slope systems. Traditional probabilistic seismic hazard analysis usually focuses on evaluating slope displacement at a particular location, and it is not suitable for spatially distributed slopes over a large region. This study proposes a computationally efficient framework for fully probabilistic seismic displacement analysis of spatially distributed slope systems using spatially correlated vector intensity measures (IMs). First, a spatial cross‐correlation model for three key ground motion IMs, that is, peak ground acceleration (PGA), Arias intensity, and peak ground velocity, is developed using 2686 ground motion recordings from 11 recent earthquakes. To reduce the computational cost, Monte Carlo simulation and data reduction techniques are utilized to generate spatially correlated random fields for the vector IMs. The slope displacement hazards over the region are further quantified using empirical predictive equations. Finally, an illustrative example is presented to highlight the importance of the spatial correlation and the advantage of using spatially correlated vector IMs in seismic hazard analysis of spatially distributed slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Probabilistic seismic demand models are a common and often essential step in generating analytical fragility curves for highway bridges. With these probabilistic models being traditionally conditioned on a single seismic intensity measure (IM), the degree of uncertainty in the models is dependent on the IM used. Selection of an optimal IM for conditioning these demand models is not a trivial matter and has been the focus of numerous studies. Unlike previous studies that consider a single structure for IM selection, this study evaluates optimal IMs for use when generating probabilistic seismic demand models for bridge portfolios such as would be found in HAZUS‐MH. Selection criteria such as efficiency, practicality, sufficiency, and hazard computability are considered in the selection process. A case study is performed considering the multi‐span simply supported steel girder bridge class. Probabilistic seismic demand models are generated considering variability in the geometric configurations and material properties, using two suites of ground motions—one synthetic and one recorded motion suite. Results show that of the 10 IMs considered, peak ground acceleration (PGA) and spectral acceleration at the fundamental period are the most optimal for the synthetic motions, and that cumulative absolute velocity is also a close contender when using recorded motions. However, when hazard computability is considered, PGA is selected as the IM of choice. Previous studies have shown that spectrally based quantities perform better than PGA for a given structure, but the findings of this study indicate that when a portfolio of bridges is considered, PGA should be used. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Ground-motion models (GMMs) are widely used in probabilistic seismic hazard analysis (PSHA) to estimate the probability distributions of earthquake-induced ground-motion intensity measures (IMs) at a site, given an earthquake of a certain magnitude occurring at a nearby location. Accounting for spatial and cross-IM correlations in earthquake-induced ground motions has important implications on probabilistic seismic hazard and loss estimates. This study first develops a new Italian GMM with spatial correlation for 31 amplitude-related IMs, including peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped elastic pseudo-spectral accelerations (PSAs) at 29 periods ranging from 0.01 to 4 seconds. The model estimation is performed through a recently developed one-stage nonlinear regression algorithm proposed by the authors, known as the Scoring estimation approach. In fact, current state-of-practice approaches estimate spatial correlation separately from the GMM estimation, resulting in inconsistent and statistically inefficient estimators of interevent and intraevent variances and parameters in the spatial correlation model. We test whether this affects the subsequent cross-IM correlation analysis. To this aim, based on the newly developed GMM, the empirical correlation coefficients from interevent and intraevent residuals are investigated. Finally, a set of analytical correlation models between the selected IMs are proposed. This is of special interest as several correlation models between different IMs have been calibrated and validated based on advanced GMMs and global datasets, lacking earthquakes in extensional regions; however, modeling the correlation between different IM types has not been adequately addressed by current, state-of-the-art GMMs and recent ground-motion records for Italy.  相似文献   

12.
王海东    张寅科 《世界地震工程》2022,38(2):058-66
结构在主震作用下发生损伤,由于刚度和强度退化导致结构周期的延长,再加上高阶周期的影响,在随后的余震对主震损伤结构抗震性能的影响分析中,基于弹性周期的传统谱加速度可能不适用,有必要对地震动强度指标的选择进行进一步研究。本文以9层Benchmark钢框架为研究对象,选取10种地震动强度指标,分别从离散性和相关性两个维度对比分析了其在余震IDA分析中的优劣性。研究结果表明:与最大层间位移角相比,最大残余层间位移角更能够准确地量化主震对结构造成的损伤;对于钢框架结构,基于一段周期的几何平均谱加速度的IMBoj&Lev指标是最优的地震动强度指标,相对于SaT1)离散性降低了30%左右,相关性提高了6%左右。  相似文献   

13.
The selection of a scalar Intensity Measure (IM) for performing analytical vulnerability (loss) assessment across a building class is addressed. We investigate the ability of several IM choices to downgrade the effect of seismological parameters (sufficiency) as well as reduce the record‐to‐record variability (efficiency) for both highrise and lowrise sets of ‘index’ buildings. These characteristics are explored in unprecedented detail, employing comparisons and statistical significance testing at given levels of local engineering demand parameters (story drift ratios and peak floor accelerations) that relate to losses, instead of global variables such as the maximum interstory drift. Thus, a detailed limit‐state‐specific view is offered for the suitability of different scalar IMs for loss assessment. As expected, typical single‐period spectral values are found to introduce unwanted bias at high levels of scaling, both for a single as well as a class of buildings. On the other hand, the geometric mean of the spectral acceleration values estimated at several periods between the class‐average second‐mode and an elongated class‐average first‐mode period offers a practical choice that significantly reduces the spectral‐shape bias without requiring the development of new ground motion prediction equations. Given that record selection remains a site‐ and building‐specific process, such an improved IM can help achieve reliable estimates for building portfolios, as well as single structures, at no additional cost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
SPO2IDA is introduced, a software tool that is capable of recreating the seismic behaviour of oscillators with complex quadrilinear backbones. It provides a direct connection between the static pushover (SPO) curve and the results of incremental dynamic analysis (IDA), a computer‐intensive procedure that offers thorough demand and capacity prediction capability by using a series of nonlinear dynamic analyses under a suitably scaled suite of ground motion records. To achieve this, the seismic behaviour of numerous single‐degree‐of‐freedom (SDOF) systems is investigated through IDA. The oscillators have a wide range of periods and feature pinching hysteresis with backbones ranging from simple bilinear to complex quadrilinear with an elastic, a hardening and a negative‐stiffness segment plus a final residual plateau that terminates with a drop to zero strength. An efficient method is introduced to treat the backbone shape by summarizing the analysis results into the 16, 50 and 84% fractile IDA curves, reducing them to a few shape parameters and finding simpler backbones that reproduce the IDA curves of complex ones. Thus, vast economies are realized while important intuition is gained on the role of the backbone shape to the seismic performance. The final product is SPO2IDA, an accurate, spreadsheet‐level tool for performance‐based earthquake engineering that can rapidly estimate demands and limit‐state capacities, strength reduction R‐factors and inelastic displacement ratios for any SDOF system with such a quadrilinear SPO curve. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Seismic intensity measure (IM) selection is associated with consideration of multiple criteria, and there are uncertainties within the selection process. In this paper, a novel multi-criteria decision making (MCDM) approach by incorporating stochastic multi-criteria acceptability analysis (SMAA) with technique for order preference by similarity to ideal solution (TOPSIS) is proposed to solve the stochastic decision making problem of IM selection. TOPSIS provides an alternative rank function, and the SMAA is used to address the uncertainties within the IM selection. The performance criteria (e.g., efficiency, proficiency, practicality, sufficiency, and correlation) are evaluated for the investigated structural components, and the decision matrix is formulated based on the criteria of each IM alternative. Furthermore, the importance of the component to system reliability is quantified in a probabilistic manner using nonlinear time history analysis and serves as the weighting factors in MCDM stage. The holistic acceptability indices indicating the overall acceptability levels of IM alternatives are computed by the proposed approach. Additionally, the effects of different IMs (e.g., average spectral acceleration, peak ground velocity, and spectral acceleration) on probabilistic seismic loss and resilience are investigated to further support the IM selection. The proposed approach is illustrated on a highway bridge, and the results are presented.  相似文献   

16.
This paper investigates the performance of spectral acceleration averaged over a period range (Saavg) as an intensity measure (IM) for estimating the collapse risk of structures subjected to earthquake loading. The performance of Saavg is evaluated using the following criteria: efficiency, sufficiency, the availability or ease of developing probabilistic seismic hazard information in terms of the IM and the variability of collapse risk estimates produced by the IM. Comparisons are also made between Saavg and the more traditional IM: spectral acceleration at the first‐mode period of the structure (Sa(T1)). Though most previous studies have evaluated IMs using a relatively limited set of structures, this paper considers nearly 700 moment‐resisting frame and shear wall structures of various heights to compare the efficiency and sufficiency of the IMs. The collapse risk estimates produced by Saavg and Sa(T1) are also compared, and the variability of the risk estimates is evaluated when different ground motion sets are used to assess the structural response. The results of this paper suggest that Saavg, when computed using an appropriate period range, is generally more efficient, more likely to be sufficient and provides more stable collapse risk estimates than Sa(T1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure(v IM), which predicts the limit-state capacities efficiently with multi-intensity measures of seismic event. Accounting for the uncertainties of the bridge model, ten single-bent overpass bridge structures are taken as samples statistically using Latin hypercube sampling approach. 200 earthquake records are chosen randomly for the uncertainties of ground motions according to the site condition of the bridges. The uncertainties of structural capacity and seismic demand are evaluated with the ratios of demand to capacity in different damage state. By comparing the relative importance of different intensity measures, Sa(T1) and Sa(T2) are chosen as v IM. Then, the vector-valued fragility functions of different bridge components are developed. Finally, the system-level vulnerability of the bridge based on v IM is studied with DunnettSobel class correlation matrix which can consider the correlation effects of different bridge components. The study indicates that an increment IMs from a scalar IM to v IM results in a significant reduction in the dispersion of fragility functions and in the uncertainties in evaluating earthquake risk. The feasibility and validity of the proposed vulnerability analysis method is validated and the bridge is more vulnerable than any components.  相似文献   

18.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

19.
为研究高层RC框架结构罕遇地震下的易损性,设计了一个7度区典型11层RC框架结构。采用IDA方法进行时程分析,以地震动峰值地面加速度和结构第一自振周期对应的谱加速度为地震动强度指标,最大层间位移角为结构损伤指标,分别得到了单一地震动强度和双地震动强度参数下的IDA曲线和失效概率,绘制了双地震动强度参数下易损性曲面,并对单一地震动强度和双地震动强度参数下的易损性分析结果进行了对比。结果表明:罕遇地震下,采用双地震动强度参数结构失效概率明显低于采用单一地震动强度参数结构失效概率;对高层RC框架结构,采用双地震动强度参数进行易损性分析反映的地震动信息更全面;采用双地震动强度参数得到的结构失效概率公式更能真实量化不同强度地震作用下结构的失效概率。  相似文献   

20.
Bridges with deck supported on either sliding or elastomeric bearings are very common in mid‐seismicity regions. Their main seismic vulnerabilities are related to the pounding of the deck against abutments or between the different deck elements. A simplified model of the longitudinal behavior of those bridges will allow to characterize the reaction forces developed during pounding using the Pacific Earthquake Engineering Research Center framework formula. In order to ensure the general applicability of the results obtained, a large number of system parameter combinations will be considered. The heart of the formula is the identification of suitable intermediate variables. First, the pseudo acceleration spectral value for the fundamental period of the system (Sa(Ts)) will be used as an intensity measure (IM). This IM will result in a very large non‐explained variability of the engineering demand parameter. A portion of this variability will be proved to be related to the relative content of high‐frequency energy in the input motion. Two vector‐valued IMs including a second parameter taking this energy content into account will then be considered. For both of them, a suitable form for the conditional intensity dependence of the response will be obtained. The question of which one to choose will also be analyzed. Finally, additional issues related to the IM will be studied: its applicability to pulse‐type records, the validity of scaling records and the sufficiency of the IM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号