首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
This paper describes the constitutive behavior and particle-scale kinematics of granular materials in three-dimensional (3D) axisymmetric triaxial testing using discrete element method (DEM). PFC3D code was used to run the DEM simulations using a flexible membrane boundary model consisting of spherical particles linked through flexible contact bonds. The overall deformation behavior of the specimen was then compared with the specimen with rigid boundary and experimental measurements. Computed tomography was used to track the evolution of particle translation and rotation within a laboratory triaxial specimen in 3D. The DEM model of the flexible membrane specimen successfully predicted the stress–strain behavior when compared with laboratory experiment results at different confining pressures. The DEM results showed that the rigid specimen applies a uniform deformation and leads to non-uniformities in the confining stress along the particle-boundary interface in the lateral direction. In contrast, the flexible specimen better replicates the uniformly applied confining stress of a laboratory triaxial experiment. The 3D DEM simulations of the specimen with flexible membrane overpredicted particle translation and rotation in all directions when compared to a laboratory triaxial specimen. The difference between the particle translation and rotation distributions of DEM specimens with rigid and flexible membrane is almost negligible. The DEM specimen with flexible membrane produces a better prediction of the macroscopic stress–strain behavior and deformation characteristics of granular materials in 3D DEM simulations when compared to a specimen with rigid membrane. Comparing macroscale response and particle-scale kinematics between triaxial simulation results of rigid versus flexible membrane demonstrated the significant influence of boundary effects on the constitutive behavior of granular materials.  相似文献   

3.
The strength parameter mi in the Hoek–Brown strength criterion is empirical and was developed by trial and error. To better understand the fundamental relationship between mi and the physical characteristics of intact rock, this paper presents a systematic study of mi by representing intact rock as a densely packed cemented particle material and simulating its mechanical behavior using particle flow modeling. Specifically, the three‐dimensional particle flow code (PFC3D) was used to conduct numerical true triaxial compression tests on intact rock and to investigate the effect of non‐spherical micro‐particle parameters on mi. To generate numerical intact rock specimens containing non‐spherical micro‐particles, a new genesis process was proposed, and a specific loop algorithm was used based on the efficiency of the process and the acceptability of generated specimens. Four main parameters—number, aspect ratio, size, and shape—of non‐spherical micro‐particles were studied, and the results indicated that they all have great effect on mi. The strength parameter mi increases when the number, aspect ratio, or size is larger or the shape becomes more irregular, mainly as a result of the higher level of interlocking between particles. This confirms the observations from engineering experience and laboratory experiments. To simulate the right strength parameter mi, it is important to use appropriate non‐spherical micro‐particles by controlling these four parameters. This is further demonstrated by the simulation of two widely studied rocks, Lac du Bonnet granite and Carrara marble. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The present paper evaluates the role of microfabric in strain localization patterns observed in soil specimens during its shear deformation in compression and extension triaxial testing. A series of compression and extension lubricated end triaxial tests are performed on Kaolin clay with extreme as well as intermediate microfabrics, which are obtained using slurry consolidation technique by varying calagon content from 0 to 3 %. Intermediate microfabric is the geometric arrangement of particles within the soil mass, which lies in between the particle orientation during two extreme microfabrics; flocculated and dispersed. Flocculated has random orientation of particles with face-to-edge particle contacts and dispersed has parallel orientation of particles with face-to-face particle contacts. When the specimen is subjected to large stress levels in triaxial testing, the particle orientation and geometric arrangement get affected due to the force acting on the clay platelets. In this experimental research, the variation in clay’s stress–strain and pore pressure response and initiation, propagation and formation of shear bands at different levels of compression and extension shearing is evaluated using digital image analysis setup associated with triaxial system.  相似文献   

5.
The results of an extensive programme of laboratory testing on intact and reconstituted samples of a pyroclastic weak rock from the volcanic complex of the Colli Albani (Central Italy) are presented. The deposit is known as Pozzolana Nera and may be assimilated to a bonded coarse grained material. The nature of bonds and the micro‐structural features were examined by means of diffractometry, optical and electron microscopy. As bonds are made of the same constituents of grains and aggregates of grains, bond deterioration and particles breakage upon loading are indistinguishable features of the mechanical behaviour. The testing programme consisted mainly of one‐dimensional and drained and undrained triaxial compression tests in a wide range of confining pressures up to 58 MPa. As confining stress increases, the mechanical behaviour of the material changes from brittle and dilatant to ductile and contractant; for both brittle and ductile behaviour failure is associated with the formation of shear surfaces separating the sample in several parts at the end of test. The experimental stress–dilatancy relationships are compared with the classical stress–dilatancy theories for a purely frictional material and for a material with friction and cohesion between particles. The analysis of the data indicates that peak strength results from the interplay between degradation of inter‐particle bonds, increasing friction between particles and increasing rate of dilation. Copyright © 2001 John Wiley & Son, Ltd.  相似文献   

6.
Rail tracks undergo degradation owing to particle breakage and fouling of ballast by various fines including coal and subgrade soil. As the ballast becomes fouled, its strength and drainage capacity are compromised, sometimes resulting in differential settlement and reduced track stability. This paper demonstrates a continuum mechanics based framework to evaluate the detrimental effect of fines on the strength, deformation and degradation of coal-fouled ballast under monotonic loading. An elastoplastic constitutive model that considers the effect of fines content and energy consumption associated with particle breakage during shearing is presented. This multiphase constitutive model is developed within a critical state framework based on a kinematic-type yield locus and a modified stress-dilatancy approach. A general formulation for the rate of ballast breakage and coal particle breakage during triaxial shearing is presented and incorporated into the plastic flow rule to accurately predict the stress–strain response of coal-fouled ballast at various confining pressures. The behaviour of ballast at various levels of fouling is analysed and validated by experimental data.  相似文献   

7.
Railway ballast particles undergo significant amount of breakage under repeated train load. Breakage of ballast particles, especially highly angular fresh ones, causes an increase in settlement, contributing to track degradation. The quantitative analysis of the influence of breakage on the stress-strain properties of ballast can be performed either experimentally or numerically. Numerical modeling has the advantage of simulating ballast breakage subject to various types of loading and different boundary conditions for a range of material properties. In this paper, ballast breakage under cyclic loading is simulated using a 2D discrete element method (DEM) utilizing the software PFC2D . A new subroutine is developed and incorporated in the PFC2D analysis to study ballast breakage and to quantify breakage in relation to particle size distribution. The influence of confining pressure on both breakage and permanent deformation is also studied and compared with laboratory observations. The findings of this paper provide an insight into the true ballast behavior under cyclic loading and are expected to assist railway practitioners in developing suitable design criteria for track stability.  相似文献   

8.
As a result of deposition process and particle characteristics, granular materials can be inherently anisotropic. Many researchers have strongly suggested that the inherent anisotropy is the main reason for the deformation non‐coaxiality of granular materials. However, their relationships are not unanimous because of the limited understanding of the non‐coaxial micro‐mechanism. In this study, we investigated the influence of inherent anisotropy on the non‐coaxial angle using the discrete element method. Firstly, we developed a new discrete element method approach using rough elliptic particles and proposed a novel method to produce anisotropic specimens. Secondly, the effects of initial specimen density and particle characteristics, such as particle aspect ratio A m, rolling resistance coefficient β , and bedding plane orientation δ , were examined by a series of biaxial tests and rotational principal axes tests. Findings from the numerical simulations are summarized as follows: (1) the peak internal friction angle ? p and the non‐coaxial angle i both increase with the initial density, A m and β , and they both increase initially and then decrease with δ in the range of 0–90°; (2) among the particle characteristics, the influence of A m is the most significant; and (3) for anisotropic specimens, the non‐coaxial angle can be calculated using the double slip and rotation rate model. Then, an empirical formula was proposed based on the simulation results to depict the relationship between the non‐coaxial angle and the particle characteristics. Finally, the particle‐scale mechanism of non‐coaxiality for granular materials was discussed from the perspective of energy dissipation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A quasi‐static homogeneous drained triaxial compression test on cohesionless sand under constant lateral pressure was simulated using a three‐dimensional discrete element method. Grains were modelled by means of particle clusters composed of rigid spheres or spheres with contact moments imitating irregular particle shapes. Attention was paid to the effect of initial void ratio and grain shape mixture on the shear strength, volume changes, force chains, kinetic, elastic and dissipated energies. In addition, the effect of the mean grain size, grain size distribution, grain size range, specimen size and roughness and stiffness of boundaries was numerically analysed in initially dense sand. Some numerical results were compared with available experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The present paper deals with the impact of shear deformation on the geometric arrangement of particles within the soil specimen, which is termed as the microfabric of soil. A series of compression and extension lubricated end triaxial tests are performed on cylindrical specimens of Kaolinite clay with two extreme microfabrics; dispersed and flocculated, which are obtained using slurry consolidation technique. Flocculated microfabric has random orientation of particles within the soil mass having face-to-edge particle contacts; however, dispersed microfabric has parallel orientation of particles containing face-to-face particle contacts. When the specimen is subjected to large stress levels during its shear deformation, the particle orientation and the geometric arrangement within the soil specimen gets affected due to the force acting on the clay platelets. The variation in microfabric of soil before and after shear deformation process is evaluated by obtaining X-ray diffraction patterns of the clay specimen at three different locations using standard X-ray diffractometer. The discussion includes an analysis of the orientation of soil particles located at shear banding zones of the clay specimens, which may be useful for understanding the strain localization development in clays.  相似文献   

11.
The plane strain behavior of particulate mixtures containing soluble particles was investigated by conducting both laboratory tests and numerical analysis. To perform the laboratory experiments, soluble mixtures were prepared using photoelastic disks and ice disks with diameters in the ratios (Dice disk/Dphotoelastic disk) of 0.5 and 0.7, and the evolution of the force chain and pore structure was monitored during the dissolution of the ice disks. Subsequently, numerical analysis was conducted by using the 2‐dimensional discrete element method for the soluble mixtures, and it was compared with the experimental results. Additionally, parametric studies were implemented by varying the particle size ratios between the soluble and non‐soluble particles and the volumetric fraction of the soluble particles. The results of the laboratory experiments and numerical analysis demonstrate that (1) after the dissolution of the soluble particles, the pore fabric of the specimens changed, resulting in a force chain changes, local void increases, and coordination number decreases; (2) the effects of soluble particles on the macro‐behaviors of the mixtures could be divided into 3 zones based on the particle size ratios between the soluble and non‐soluble particles and volumetric fraction of soluble particles. These zones were as follows: (Zone 1)—with a small total soluble volume, slight decrease in the in situ lateral pressure (K0), and minor increase in the hydraulic conductivity (k); (Zone 2)—with a moderate soluble particle; the dissolution generated a honey‐comb particle structure; (Zone 3)—the total soluble volume was very large, and the high volumetric fraction of the dissolving particle collapsed the pore structure, decreasing in the in situ lateral pressure (K0) but increasing the hydraulic conductivity (k). The horizontal stress returned to almost the original level, and the internal arching formation increased significantly with the hydraulic conductivity (k).  相似文献   

12.
The macroscopic mechanical behavior of granular materials inherently depends on the properties of particles that compose them. Using the discrete element method, the effect of particle contact friction and polydispersity on the macroscopic stress response of 3D sphere packings is studied. The analytical expressions for the pressure, coordination number and fraction of rattlers proposed for isotropically deformed frictionless systems also hold when the interparticle coefficient of friction is finite; however, the numerical values of the parameters such as the jamming volume fraction change with varying microscopic contact and particle properties. The macroscopic response under deviatoric loading is studied with triaxial test simulations. Concerning the shear strength, our results agree with previous studies showing that the deviatoric stress ratio increases with particle coefficient of friction μ starting from a nonzero value for μ = 0 and saturating for large μ. On the other hand, the volumetric strain does not have a monotonic dependence on the particle contact friction. Most notably, maximum compaction is reached at an intermediate value of the coefficient of friction μ ≈ 0.3. The effect of polydispersity on the macroscopic stress–strain relationship cannot be studied independent of initial packing conditions. The shear strength increases with polydispersity when the initial volume fraction is fixed, but the effect of polydispersity is much less pronounced when the initial pressure of the packings is fixed. Finally, a simple hypoplastic constitutive model is calibrated with numerical test results following an established procedure to ascertain the relation between particle properties and material coefficients of the macroscopic model. The calibrated model is in good qualitative agreement with simulation results.  相似文献   

13.
《Sedimentology》2018,65(6):1859-1874
Ripples are prevalent in aeolian landscapes. Many researchers have focused on the shape and formation of sand ripples, but few have studied the differences in the particle size of sand on crests and in troughs along bed, especially the variations caused by changes in friction velocity and the wind‐blowing duration. A particle size of 158 μm (d ) was used to create aeolian ripples in a wind tunnel under four friction velocities (u *) with different wind duration times (t ). Samples were collected from the surfaces of ripple crests and troughs, respectively, at seven sites, and particle sizes were measured using a Malvern Mastersizer 2000. The main results were: (i) The particle size distributions of sand in troughs are unimodal with slight variations of particle size parameters, including mean particle size, standard deviation, skewness and kurtosis, etc., under different conditions, while these particle size parameters of sand on crests change with friction velocity and deflation time. Moreover, some of the particle distribution curves for the sand on crests do not follow typical unimodal curves. (ii) With increasing friction velocity or deflation duration, the sand on the crests shows a coarsening process relative to those on the bed surface. The particle size of sand on crests at a 1 m bed increases linearly with friction velocity (=  344·27 + 34·54 u *) at a given wind‐blowing duration. The particle sizes of sand on crests at 1 m, 2 m and 4 m beds increase with a power‐law relationship (= a + t b, where a and b are fitting parameters) with deflation time at a given friction velocity. (iii) The probability cumulative curves of sand showed a three‐section pattern in troughs and on most of the crests but a four‐section pattern at crest locations due to increased influence by friction velocity and deflation time. The proportions of the sediment moved by suspension, saltation and creep in the three‐section pattern were within the ranges of 0·2% to 2·0%, 97·0% to 98·9%, and 0·8% to 3·0%, respectively. For the four‐section pattern, suspension accounted for 0·3% and 3·0%, and the proportion of creep increased with friction velocity and deflation time, while saltation decreased accordingly. Although these results require additional validation, they help to advance current understanding of the grain‐size characteristics of aeolian ripples.  相似文献   

14.
压力作用下颗粒发生破碎是引起砂土力学特性变化的重要因素之一, 对于钙质砂这种易破碎的材料更是如此。为进一步弄清颗粒破碎对钙质砂的应力-应变强度影响, 本文对钙质砂进行三轴固结排水剪切试验得到应力-应变曲线, 并筛分得到三轴试验前后钙质砂颗分曲线。通过引入Hardin定义的颗粒相对破碎率Br, 分析了相对密度、围压与颗粒破碎的关系及颗粒破碎对钙质砂应力-应变和抗剪强度的影响。结果表明:随围压的增大颗粒破碎增量逐渐减小, 直到破碎达到一个上限值, 此时围压和相对密度对颗粒破碎影响很小; 颗粒间的滑动标志着应力达到极限状态, 而颗粒破碎会阻碍应力达到极限状态, 在本实验中, 低围压时颗粒破碎少, 颗粒相对运动形式为滑移, 使应力-应变曲线为软化型, 高围压下颗粒破碎严重, 颗粒破碎在剪切过程中始终发生, 使应力-应变曲线呈应变硬化型; 颗粒破碎使体变从剪胀逐渐发展到剪缩, 且破碎越严重剪缩越严重; 在低围压下钙质砂强度主要由剪胀和咬合提供, 高围压下颗粒破碎严重, 剪胀消失, 咬合减小, 使峰值摩擦角减小, 抗剪强度降低。  相似文献   

15.
Wang  Pengpeng  Guo  Xiaoxia  Sang  Yong  Shao  Longtan  Yin  Zenan  Wang  Yudi 《Acta Geotechnica》2020,15(10):2891-2904

Based on the three-dimensional digital image correlation (3D-DIC) technique, the stereovision system has been applied to the improved triaxial apparatus to obtain 3D full-field deformation of the specimen during triaxial testing. Through the calibration process, the 3D-DIC technique can obtain the accurate specimen’s spatial displacement deformation. Meanwhile, a subpixel edge detection algorithm has been combined with 3D-DIC technique to calculate the radial strain and the volume strain of the specimen directly. Furthermore, a series of consolidated drained and undrained triaxial tests were carried out on Hainan (China) sand specimens and measured by the conventional and the image measurement methods. Compared to the results measured by the conventional method, the image measurement technique can obtain the more experimental data, such as the 3D displacement field of the whole specimen, the local strain distribution, and so on. The measurement results also show the conventional method would be disturbed by the end constraints in triaxial tests so that the strength of the soil would be overestimated. Meanwhile, the middle of the specimen would be selected to calculate the stress–strain relationship without the influence of the end constraints in the proposed method. Based on the image measurement results, the proposed method has the potential to be used in geotechnical tests for exploring the soil’s progressive failure behaviors, inhomogeneous deformation and mechanical characteristics.

  相似文献   

16.
Reported here are results from new flume experiments examining deposition and entrainment of inert, silt‐sized particles (with spherical diameters in the range from 20 to 60 μm) to and from planar, impermeable and initially starved beds underlying channel flows. Bed surfaces comprised smooth or fixed sand‐size granular roughness and provided hydraulically smooth to transitionally rough boundaries. Results of these experiments were analysed with a simple model that describes the evolution of vertically averaged concentration of suspended sediment and accommodates the simultaneous delivery to and entrainment of grains from the bed. The rate of particle arrival to a bed diminishes linearly, and the rate of particle entrainment increases by the 5/2 power, as the value of the dimensionless Saffman parameter S = u*3/g’ν approaches a threshold value of order unity, where u is the conventional friction velocity of the turbulent channel flow, g’ is the acceleration due to gravity adjusted for the submerged buoyancy of individual particles and ν is the kinematic viscosity of the transporting fluid. This transport behaviour is consistent with the notion that non‐cohesive, silt‐sized particles can neither reach nor remain on an impermeable bed under flow conditions where mean lift imposed on stationary particles in the viscous sublayer equals or exceeds the submerged weight of individual particles. Within the size range of particles used in these experiments, particle size and the characteristic size of granular roughness, up to that of medium sand, did not affect rates of dimensionless arrival or entrainment to a significant degree. Instead, a new but consistent picture of fine‐particle transport is emerging. Silt‐sized material, at least, is subject to potentially significant interaction with the bed during intermittent suspension transport at intermediate flow speeds greater than the value required for initiation of transport (ca 20 cm sec?1) but less than the value (ca 50 cm sec?1) required by the Saffman criterion ensuring transport in fully passive suspension or, equivalently, ‘wash‐load’.  相似文献   

17.
颗粒破碎是粒状材料在高应力状态下的一种基本现象。为了研究冻结砂土中颗粒破碎对应力应变关系的影响,将冻结砂土视为复合颗粒材料,忽略冰的压融,考虑内摩擦角随应力状态的变化,构建一个适用于冻结砂土的考虑颗粒破碎的非线性本构模型。构建过程分为三步,首先是基于三轴剪切前后颗粒分析对冻结砂土颗粒破碎模式和产生机理进行探讨;其次是基于考虑颗粒破碎的能量平衡方程,对冻土在三轴剪切试验过程中的颗粒破碎耗能进行分析,结果表明颗粒破碎耗能随轴向应变呈双曲线变化趋势;最后应用考虑颗粒破碎的剪胀方程修正沈珠江三参数非线性模型中的体积切线模量νt,得到一个考虑颗粒破碎的非线性本构模型,模型参数可以通过单轴压缩试验和常规三轴试验确定。将原模型和修正后模型的计算结果与控制温度为-6℃,围压为1 MPa、4 MPa、6 MPa、8 MPa和10 MPa时冻结砂土的试验结果进行对比,结果表明该模型能够较好的模拟冻结砂土从低围压到高围压的应变软化特征与剪胀特征。   相似文献   

18.
粗粒土的破碎耗能计算及影响因素   总被引:2,自引:1,他引:1  
贾宇峰  迟世春  杨峻  林皋 《岩土力学》2009,30(7):1960-1966
粗粒土的颗粒破碎直接改变了土体本身结构,对粗粒土的剪胀和内摩擦角都会产生影响。在土体剪切过程中,体积应力和剪切应力在体积应变和剪切应变上做功,这部分能量在剪切过程中转化为颗粒的弹性储能、颗粒间的摩擦耗能、颗粒剪胀时对外做功和颗粒破碎耗能4部分。准确计算剪切过程中粗粒土破碎耗能的目的是:从能量角度分析颗粒破碎对土体本构关系的影响,为建立考虑颗粒破碎的粗粒土本构关系创造条件。通过分析粗粒土的常规三轴试验数据,计算得到了剪切过程中的粗粒土破碎耗能。计算结果表明,常规三轴试验条件下粗粒土破碎耗能主要受固结应力、土体摩擦系数M等因素的影响。  相似文献   

19.
Fu  Longlong  Zhou  Shunhua  Guo  Peijun  Tian  Zhekan  Zheng  Yuexiao 《Acta Geotechnica》2021,16(5):1527-1545

Loads transfer in ballast track through contacts among randomly distributed ballast particles and have strong heterogeneity. Since the size ratio between ballast track and ballast particles is generally small, using averaged stress to describe the internal mechanical state in ballast track faces practical difficulties. For example, particle movements and high local concentration stress tend to be ignored. The inter-particle contact stress is crucial to evaluate the particle behaviors, such as abrasion, movements, and furtherly the performance of ballast track. However, the contact stress on ballast particles is hard to predict or measure. We conduct a full size model test to investigate the dynamic characteristics of longitudinal stress on ballast particles as well as different lateral regions under vertical cyclic loads with various loading magnitudes and frequencies. An obvious seesaw effect of longitudinal contact stress is observed: the stresses at some contact areas have the same phase with applied cyclic load while at other contact areas have an opposite phase. The seesaw effect of contact stress is then used to evaluate the rotational movements of ballast particles. The variation of contact area and stress of the ballast particles with loading magnitudes demonstrates that the rigid contact assumption is appropriate when analyzing the contact behavior of ballast particles. The cumulative probability distribution of contact stress with stress level can be described by an inversely proportional function, based on which the maximum contact stress can be estimated according to the longitudinal average stress. Besides, the lateral dispersion angle of the vertical loads in the ballast track is about 35°, which is independent of the given loading magnitudes and frequencies.

  相似文献   

20.
During several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ. In general, the behaviour of cohesionless granular‐material‐like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure. Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto‐plasticity concept is validated by numerical computations of several laboratory foundation‐ and slope‐failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号